Virus Genes

, Volume 11, Issue 2–3, pp 285–297

Evolution of T4-related phages

  • Elizabeth Kutter
  • Ketevan Gachechiladze
  • Alexandr Poglazov
  • Elena Marusich
  • Mikhail Shneider
  • Pia Aronsson
  • Alberto Napuli
  • Darlene Porter
  • Vadim Mesyanzhinov
Part B: Molecular Processes Involved In The Evolution Of RNA And DNA Viruses

Abstract

Much progress has been made in understanding T-even phage biology in the last 50 years. We now know the entire sequence of T4, encoding nearly 300 genes, only 69 of which have been shown to be essential under standard laboratory conditions; no specific function is yet known for about 140 of them. The origin of most phage genes is unclear, and only 42 genes in T4 have significant similarity to anything currently included in GenBank. Comparative analysis of related phages is now being used to gain insight into both the evolutionary origins and interrelationships of these phage genes, and the functions of their protein products. The genomes of phages isolated from Tbilisi hospitals, Long Island sewage plants, the Denver zoo, and Khabarovsk show basic similarity. However, these phages show substantial insertions and deletions in a number of regions relative to each other, and closer investigation of specific sequences often reveals much more complex relationships. There are only a few cases in T4-related phages in which there is evidence for evolution through DNA duplication. These include the fibrous products of genes 12, 34, and 37; head proteins gp23 and gp24; and the Alt enzyme and its downstream neighbors. T4 also contains 13 apparent relatives of group I and group II intron homing endonucleases. Distal portions of the tail fibers of various T-even phages contain segments closely related to tail-fiber regions of other DNA coliphages, such as Mu, P1, P2, and lambda. Horizontal gene transfer clearly emerges as a major factor in the evolution of at least the tail-fiber regions, where site-specific recombination probably is involved in the exchange of host-range determinants.

Key words

T-even phage T4 phage evolution DNA duplication horizontal gene transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luria S.E.,General Virology. John Wiley & Sons, New York, 1953, pp. 344–363.Google Scholar
  2. 2.
    Kutter E., Stidham T., Guttman B., Kutter E., Batts D., Peterson S., Djavakhishvili T., Arisaka F., Mesyanzhinov V., Rüger W., and Mosig G. in Karam J.D. (ed).Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington D.C., 1994, pp. 491–519.Google Scholar
  3. 3.
    Borodvsky M., Mcininch J.D., Koonin E.V., Rudd K.E., Me'dique C., and Danchin A., Nucleic Acids Res17 3554–3562, 1995.Google Scholar
  4. 4.
    Selick H.E., Stormo G.D., Dyson R.L., and Alberts B.M., J Virol67 2305–2316, 1993.Google Scholar
  5. 5.
    Repoila F., Tetart F., Bouet J.Y., and Krisch H.M., EMBO J13 4181–4192, 1994.Google Scholar
  6. 6.
    Miller E. and Jozwik C.E., J Bacteriol172 5180–5186, 1990.Google Scholar
  7. 7.
    Koch T. and Rüger W., Virology203 294–298, 1994.Google Scholar
  8. 8.
    Henning U. and Hashemolhosseini S. in Karam J.D. (ed).Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington D.C., 1994, pp. 291–298.Google Scholar
  9. 9.
    Sobolev B.N., Shneider M.N., Marusich E.I., and Mesyanzhinov V.V. in Poglazov B. (ed.)Evolutionary Biochemistry and Related Areas of Physiochemical Biology. Bach Institute of Biochemistry and ANKO, Moscow, Russia, 1995, pp. 351–374.Google Scholar
  10. 10.
    Chanishvili T.,Dysentery Bacteriophages (Diagnostic Phage Classification and Host Ranges). PhD thesis, Bacteriophage Institute, Tbilisi, Georgia, 1969.Google Scholar
  11. 11.
    Gachechiladze K.K.,Antigenic Characteristics of T-Even Bacteriophages. Doctoral thesis, Bacteriophage Institute, Tbilisi, Georgia, 1981.Google Scholar
  12. 12.
    Kutter E., Kellenberger E., Carlson K., Eddy S., Neitzel J., Messinger L., North J., and Guttman B. in Karam J.D. (ed).Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington D.C., 1994, pp. 406–418.Google Scholar
  13. 13.
    Russell R.L. and Huskey R.J., Genetics78 989–1014, 1974.Google Scholar
  14. 14.
    Eddy S., PhD thesis, Introns in the T-even Bacteriophages, U. of Colorado at Boulder, 1992.Google Scholar
  15. 15.
    Tikhonenko A.S., Gachechiladze K.K., Bespalova A., Kretova A.F., and Chanishvili T.G., Mol Biol10 812–817, 1976 (in Russian).Google Scholar
  16. 16.
    Moen T.L., Seidman J.G., and McClain W.H., J Biol Chem253 7910–7917, 1978.Google Scholar
  17. 17.
    Shub D.A., Coetzee T., Hall D.H., and Belfort M. in Karam J.D. (ed).Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington D.C., 1994, pp. 186–192.Google Scholar
  18. 18.
    Eddy S. and Gold L., Proc Natl Acad Sci USA89 1544–1547, 1992.Google Scholar
  19. 19.
    Botstein D. and Herskowitz I., Nature251 584–589, 1974.Google Scholar
  20. 20.
    Casjens S., Hatfull G., and Hendrix R., Semin Virol3 383–397, 1992.Google Scholar
  21. 21.
    Botstein D., Ann NY Acad Sci354 484–491, 1980.Google Scholar
  22. 22.
    Campbell A. and Botstein D. in Hendrix R., Roberts J., Stahl F., and Weisberg R. (eds).Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1983, pp. 365–380.Google Scholar
  23. 23.
    Highton P.J., Chang Y., and Myers R.J., Mole Microbiol4 1329–1340, 1990.Google Scholar
  24. 24.
    Russell R.L., Genetics78 967–988, 1974.Google Scholar
  25. 25.
    Kim J.S. and Davidson N., Virology57 93–111, 1974.Google Scholar
  26. 26.
    Bernstein H. and Bernstein C., J Bacteriol171 2265–2270, 1989.Google Scholar
  27. 27.
    Yanagida M., Suzuki Y., and Toda T., Adv Biophys17 97–146, 1984.Google Scholar
  28. 28.
    Haggård-Ljungquist E., Halling C., and Calendar R., J Bacteriol174 1462–1477, 1992.Google Scholar
  29. 29.
    Sandmeier H., Iida S., and Arber W., J Bacteriol174 3936–3944, 1992.Google Scholar
  30. 30.
    Sandmeier H., Mol Microbiol12 343–350, 1994.Google Scholar
  31. 31.
    Efimov E.P., Nepluev I.P., Sobolev B.N., Zurabishvili T.G., Schultess T., Lustig A., Engel J., Haener M., Aebi U., Venyaminov Yu. S., Potekhin S.A., and Mesyanzhinov V.V., J Mol Biol242 470–486, 1994.Google Scholar
  32. 32.
    Conley M.P. and Wood W.B., Proc Natl Acad Sci72, 3701–3705.Google Scholar
  33. 33.
    Koch T., Raudonikiene A., Wilkens K., and Rüger W., Gene Expr4 253–264, 1995.Google Scholar
  34. 34.
    Krisch H.M. and Allet B., Proc Natl Acad Sci USA79 4937–4941, 1982.Google Scholar
  35. 35.
    McPheeters D.S., Stormo G.D., and Gold L., J Mol Biol201 517–535, 1988.Google Scholar
  36. 36.
    Selick H.E., Stormo G.D., Dyson R.L., and Alberts B.M., J Virol67 2305–2316, 1993.Google Scholar
  37. 37.
    Kutter E., White T., Kashlev M., Uzan M., McKinney J., and Guttman B. in Karam J.D. (ed).Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington D.C., 1994, pp. 357–368.Google Scholar
  38. 38.
    Liebig H.-D. and Rüger W.J., Mol Biol209 517–536, 1989.Google Scholar
  39. 39.
    Wilkens K. and Rüger W. in Karam J.D. (ed).Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington D.C., 1994, pp. 132–141.Google Scholar
  40. 40.
    Demerec M. and Fano U., Genetics30 119–136, 1945.Google Scholar
  41. 41.
    Datta D.B., Arden B., and Henning U., J Bacteriol131 821–829, 1977.Google Scholar
  42. 42.
    Riede I., Eschbach M.L., and Henning U., Mol Gen Genet195 144–152, 1984.Google Scholar
  43. 43.
    Hancock R.E.W., and Reeves P., J Bacteriol121 983–993, 1975.Google Scholar
  44. 44.
    Fildes P. and Kay D., Br J Exp Pathol38 563–572, 1957.Google Scholar
  45. 45.
    Kay D. and Fildes P., J Gen Micro Biol27 143–146, 1962Google Scholar
  46. 46.
    Russell R.L. and Huskey R.J., Genetics78 989–1014, 1974.Google Scholar
  47. 47.
    Marusich E.I. PhD thesis. Ivanovsky Inst. Moscow, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Elizabeth Kutter
    • 4
  • Ketevan Gachechiladze
    • 1
  • Alexandr Poglazov
    • 4
    • 2
  • Elena Marusich
    • 4
    • 2
  • Mikhail Shneider
    • 2
  • Pia Aronsson
    • 4
  • Alberto Napuli
    • 4
  • Darlene Porter
    • 4
  • Vadim Mesyanzhinov
    • 2
    • 3
  1. 1.Bacteriophage InstituteTbilisi
  2. 2.Ivanovsky Inst. of VirologyMoscowRussia
  3. 3.Bach Institute of BiochemistryMoscowRussia
  4. 4.The Evergreen State CollegeOlympiaUSA

Personalised recommendations