Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 59, Issue 2, pp 197–206 | Cite as

Diffusion and trapping on a nested fractal structure

  • F. Wegner
  • S. Grossmann
Article

Abstract

We consider the spreading of an ensemble of phase points on a nested hierarchy of levels whose spatial extension scales self-similar. In order to model turbulent pair separation, a deterministic dynamical law is defined that maps a given scale to all (infinitely many) smaller scales and also to the next larger scale. The model can be solved analytically. We find anomalous diffusion (exponential increase of the variance) or trapping (finite limiting value of low order moments) depending on the dominance of level-up or level-down mapping.

Keywords

Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    Einstein, A.: Ann. Phys. (Leipzig)19, 289 (1906);Google Scholar
  2. 1b.
    Perrin, J.: Die Atome. Lottermoser, A. (Hrsg.). Dresden-Blasewitz: Verl. Theodor Steinkopf 1914 (Orig. Les Atomes, Alcan, Paris 1913)Google Scholar
  3. 2a.
    Alexander, S., Bernasconi, J., Schneider, W.R., Orbach, R.: Rev. Mod. Phys.53, 175 (1981);Google Scholar
  4. 2b.
    Derrida, B., Pomeau, Y.: Phys. Rev. Lett.48, 627 (1982);Google Scholar
  5. 2c.
    Sinai, Ya.G.: Mathematical problems in theoretical physics. In: Lecture Notes in Physics. Vol. 153, p. 12. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  6. 3a.
    Gefen, Y., Aharony, A., Alexander, S.: Phys. Rev. Lett.50, 77 (1983);Google Scholar
  7. 3b.
    Pandey, R.B., Stauffer, D.: Phys. Rev. Lett.51, 527 (1983);Google Scholar
  8. 3c.
    Rammal, R., Toulouse, G.: J. Phys. (Paris) Lett.44, L 13 (1983)Google Scholar
  9. 4a.
    Richardson, L.F.: Proc. R. Soc. London Ser. A110, 709 (1926);Google Scholar
  10. 4b.
    Frenkiel, F.N., Katz, I.: J. Meterol.13, 388 (1956);Google Scholar
  11. 4c.
    Gifford, F.: J. Meteorol.14, 410 (1957);Google Scholar
  12. 4d.
    Monin, A.S., Yaglom, A.M.: Statistical fluid mechanics. Vol. 2. Cambridge, London: MIT Press 1975Google Scholar
  13. 5a.
    Grossmann, S., Procaccia, I.: Phys. Rev. A29, 1358 (1984);Google Scholar
  14. 5b.
    Effinger, H., Grossmann, S.: Phys. Rev. Lett.53, 442 (1984)Google Scholar
  15. 6.
    Fürth, R.: Z. Phys.2, 244 (1920)Google Scholar
  16. 7.
    Lundgren, T.S.: J. Fluid Mech.111, 27 (1981)Google Scholar
  17. 8.
    Grossmann, S., Thomae, S.: Z. Phys.49, 253 (1982)Google Scholar
  18. 9a.
    Geisel, T., Nierwetberg, J.: Phys. Rev. Lett.48, 7 (1982);Google Scholar
  19. 9b.
    Grossmann, S., Fujisaka, H.: Phys. Rev. A26, 1779 (1982); Z. Z. Phys. B — Condensed Matter48, 261 (1982);Google Scholar
  20. 9c.
    Schell, M., Fraser, S., Kapral, R.: Phys. Rev. A26, 504 (1982)Google Scholar
  21. 10.
    Grossmann, S., Thomae, S.: Phys. Lett.97A, 263 (1983)Google Scholar
  22. 11.
    Geisel, T., Thomae, S.: Phys. Rev. Lett.52, 1936 (1984)Google Scholar
  23. 12.
    Grossmann, S., Thomae, S.: In: Multicritical phenomena. Geilo Adv. Stud. Inst. April 10–21, 1983. Pynn, R., Skjeltorp, A.T. (eds.), pp. 423–450. New York, London: Plenum Press 1984Google Scholar
  24. 13.
    Fujisaka, H., Grossmann, S., Thomae, S.: Chaos-induced diffusion — analogues to non-linear Fokker-Planck equations. Preprint 1984Google Scholar
  25. 14.
    Gefen, Y., Mandelbrot, B.B.: J. Phys. A16, L 565 (1983)Google Scholar
  26. 15.
    Grossmann, S., Wegner, F., Hoffmann, K.H.: Anomalous diffusion on a selfsimilar hierarchical structure. Preprint (1985)Google Scholar
  27. 16.
    Hoffmann, K.H., Grossmann, S., Wegner, F.: Random walk on a fractal: eigenvalue analysis. Preprint (1985)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • F. Wegner
    • 1
  • S. Grossmann
    • 2
  1. 1.Institut für Theoretische PhysikRuprecht-Karls-Universität HeidelbergHeidelberg 1Federal Republic of Germany
  2. 2.Fachbereich PhysikPhilipps-Universität MarburgMarburgFederal Republic of Germany

Personalised recommendations