Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Acute renal failure — An integrative discussion of morphologic and functional findings

Das akute Nierenversagen — Eine integrative Diskussion morphologischer und funktioneller Befunde

  • 18 Accesses

  • 4 Citations

Summary

The ultrastructural alterations at the nephron established in animal experiments, were also confirmed, by means of an electron-microscopic examination, in eight cases of human acute renal failure (ARF). Special consideration was given in this study to single cell alterations, particularly in proximal tubular cells, with emphasis being placed on alterations due to single cell damage in the region of the renal fluid compartments. The ultrastructural alterations of the tubular cells in ARF, suggest serious impairment of the cellular capacity for electrolyte transport and metabolic processes. The shunt paths between the tubular fluid compartment and the functional interstitium, arising from necrosis of the tubular cells or dissolution of the gap or tight junctions, were discussed in terms of their significance for the directional, active transport processes of the tubular cells for sodium chloride and the passive water flow. The morphologic findings were reviewed in light of recent findings on cellular membrane processes and electrolyte transport. A reinterpretation of the morphologic and functional findings in ARF is suggested. This takes into consideration single cell function and the integrity of the renal fluid compartments.

Zusammenfassung

Durch elektronenmikroskopische Untersuchungen an 8 Fällen menschlicher akuter Nierenversagen konnten die aus tierexperimentellen Beobachtungen bekannten ultrastrukturellen Veränderungen am Nephron auch für das menschliche akute Nierenversagen bestätigt werden. Die Untersuchungen erfolgten unter besonderer Berücksichtigung der Einzelzellveränderungen, insbesondere der proximalen Tubuluszellen. Herausgestellt wurden die aus der Einzelzellschädigung resultierenden Veränderungen im Bereich der renalen Flüssigkeitskompartimente. Die ultrastrukturellen Veränderungen der Tubuluszellen beim akuten Nierenversagen deuten auf eine gravierende Beeinträchtigung der zellulären Transportkapazität für Elektrolyte und metabolischer Prozesse hin.

Die durch Tubuluszellnekrosen oder durch Lösung von Gap- bzw. Tight-Junctions entstehenden Shunt-Wege zwischen tubulärem Flüssigkeitskompartiment und funktionellem Interstitium werden in ihrer Bedeutung für die gerichteten aktiven Transportvorgänge der Tubuluszellen für Natriumchlorid und den passiven Wasserstrom diskutiert.

Die morphologischen Befunde werden unter besonderer Berücksichtigung neuer Ergebnisse der zellulären Membranprozesse und des Elektrolyttransportes besprochen. Eine Reinterpretation morphologischer und funktioneller Befunde beim akuten Nierenversagen unter besonderer Berücksichtigung der Einzelzellfunktion und der Integrität der renalen Flüssigkeitskompartimente wird vorgeschlagen.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Andrews PM, Porter KR (1974) A scanning electron microscopic study of the nephron. Am J Anat 140:81–116

  2. 2.

    Arendshorst WJ, Finn WF, Gottschalk CW (1975) Pathogenesis of acute renal failure following renal ischemia in the rat. Circ Res 37:558

  3. 3.

    Arendshorst WJ, Finn WF, Gottschalk CW (1976) Micropuncture study of acute renal failure following temporary renal ischemia in the rat. Kidney Int 10 [Suppl 6]:100–105

  4. 4.

    Bank N, Aynedjian HS, Weinstein SW (1976) Effect of intraluminal bicarbonate and chloride on fluid absorption by the rat renal proximal tubule. Kidney Int 9:457–466

  5. 5.

    Beck F, Mason J, Bauer R, Dörge A, Thurau K (1978) Electronmicroprobe analysis of intracellular electrolyte concentrations of rat kidneys following ischaemia. Pfluegers Arch 377 [Suppl R 12]:42

  6. 6.

    Berliner RW (1976) The concentrating mechanism in the renal medulla. Kidney Int 9:214–222

  7. 7.

    Bohle A (1967) Neue Ergebnisse der Nierenforschung aus pathologisch-anatomischer Sicht (Versuch einer Korrelation von Struktur und Funktion beim akuten Nierenversagen). Monatskurse für die ärztl Fortbildung 17, Nr 10:528–534

  8. 8.

    Bohle A, Jahnecke J, Meyer D, Schubert GE (1976) Morphology of acute renal failure: Comparative data from biopsy and autopsy. Kidney Int 10:9–16

  9. 9.

    Bohle A, Mackensen-Haen S, Grund KE, Christ H, Knöpfle E, Schellhorn S (1979) Shock Kidney. Pathol Res Pract 165:212–220

  10. 10.

    Boning SL (1970) Sodium-potassium activated adenosine triphosphatase and cation transport, in Membranes and Ion Transport, Vol I. Bittar EE (ed) Wiley, New York

  11. 11.

    Brandt-Rehberg P (1929) Über die Bestimmung der Menge des Glomerulumfiltrates mittels Kreatinin als Nierenfunktionsprüfung, nebst einigen Bemerkungen über die Theorien der Harnbereitung. Zentralbl Inn Med 50:367–377

  12. 12.

    Brenner BM, Stein JH (1980) Acute renal failure. Churchill Livingstone, New York, Edinburgh London and Melbourne

  13. 13.

    Bressler EH (1976) Ludwig's theory of tubular reabsorption: The role of physical factors in tubular reabsorption. Kidney Int 9:313–322

  14. 14.

    Brod J (1973) 3-Morphology of the mammalian kidney. In: The kidney. Butterworth, London

  15. 15.

    Cohen JJ, Kamm DE (1976) Renal metabolism: Relation to renal function. In: Brenner BM, Rector FC Jr (eds) The kidney, Vol I. Saunders, Philadelphia, pp 126–214

  16. 16.

    Conger JD, Robinette JB, Guggenheim SJ (1981) Effect of acetylcholine on the early phase of reversible norepinephrine-induced acute renal failure. Kidney Int 19:399–409

  17. 17.

    Daalgard OZ (1960) An electron microscopic study on glomeruli in renal biopsies taken from human shock kidney. Lab Invest 9:364

  18. 18.

    Donohoe JF, Venkatachalam MA, Bernard DB, Levinsky NG (1978) Tubular leakage and obstruction after renal ischemia: Structural-functional correlations. Kidney Int 13:208–222

  19. 19.

    Dörge A, Mason J, Beck F, Bauer R, Thurau K (1978) Electronmicroprobe analysis of intracellular concentrations of rat kidney tubules following ischaemia. Pfluegers Arch 373:[Suppl R 27] 79

  20. 20.

    Early LE, Martino JA, Friedler RM (1966) Factors affecting sodium reabsorption by proximal tubule as determined during blockade of distal sodium reabsorption. J Clin Invest 45:1668

  21. 21.

    Eisenbach GM, Steinhausen M (1973) Micropuncture studies after temporary ischemia of rat kidneys. Pfluegers Arch 343:11–25

  22. 22.

    Erlij D (1976) Solute transport across isolated epithelia. Kidney Int 9:76–87

  23. 23.

    Eveloff J, Bayerdörffer E, Silva P, Kinne R (1981) Sodium-Chloride transport in the thick ascending limb of Henle's loop. Oxygen consumption studies in isolated cells. Pfluegers Arch 389:263–270

  24. 24.

    Finn WF, Chevalier RL (1979) Recovery from post-ischemic, acute renal failure in the rat. Kidney Int 16:113–123

  25. 25.

    Flores J, DiBona DR, Beck CH, Leaf A (1972) The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. Clin Invest 51:118–126

  26. 26.

    Frega NS, DiBona DR, Guertler B, Leaf A (1976) Ischemic renal injury. Kidney Int 10:17–25

  27. 27.

    Frömter E, Rumrich G, Ullrich KJ (1973) Phenomenologic description of Na+, Cl and HCO 3 absorption from proximal tubules of the rat kidney. Pfluegers Arch 343:189–220

  28. 28.

    Gabow PA, Anderson RJ, Schrier RW (1977) Acute renal failure. Cardiovasc Med Vol II, 12:1161–1175

  29. 29.

    Giebisch G (1969a) Functional organization of proximal and distal tubular electrolyte transport. Nephron 6:260

  30. 30.

    Giebisch G, Klose RM, Malnic G, Sullivan WJ, Windhager EE (1965) Sodium movement across single perfused tubules of rat kidney. J Gen Physiol 47:1175–1194

  31. 31.

    Giebisch G, Windhager EE (1973) Electrolyte transport across renal tubular membranes. In: Orloff J, Berliner RW (eds) Handbook of physiology, Sec 8: Renal physiology. American Physiological Society, Washington DC 315–376

  32. 32.

    Glaumann B, Glaumann H, Berezesky IK, Trump BF (1975) Studies on the pathogenesis of ischemic cell injury. II. Morphological changes of the pars convoluta (P1 and P2) of the proximal tubule of the rat kidney made ischemic in vivo. Virchows Arch [Cell Pathol] 19:281–302

  33. 33.

    Glaumann B, Trump BF (1975) Studies on the pathogenesis of ischemic cell injury. III. Morphological changes of the proximal pars recta tubules (P3) of the rat kidney made ischemic in vivo. Virchows Arch [Cell Pathol] 19:303–323

  34. 34.

    Glaumann B, Glaumann H, Berczesky IK, Trump BF (1977) Studies on cellular recovery from injury. OO. Ultrastructural studies on the recovery of the pars convoluta of the proximal tubule of the rat kidney from temporary ischemia. Virchows Arch [Cell Pathol] 24:1–18

  35. 35.

    Green R, Giebisch G (1975) Some factors influencing Na and fluid reabsorption in vivo in the proximal convoluted tubule of rats. Sixth Int Congr Nephrol, Florence, Italy, Karger

  36. 36.

    Green R, Windhager EE, Giebisch G (1974) Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am J Physiol 226:265–276

  37. 37.

    Goormaghtigh N (1945) Vascular and circulatory changes in renal cortex in anuric crush syndrome. Proc Soc Exp Biol Med 59:303–305

  38. 38.

    Heidrich HG, Kinne R, Kinne-Saffran E, Hannig K (1972) The polarity of the proximal tubule cell in rat kidney. J Cell Biol 54:232–245

  39. 39.

    Hierholzer K, Wiederholt M (1976) Some aspects of distal tubular solute and water transport. Kidney Int 9:198–213

  40. 40.

    Horster M, Burg M, Potts D, Orloff J (1973) Fluid absorption by proximal tubules in the absence of a colloid osmotic gradient. Kidney Int 4:6–11

  41. 41.

    Kashgarian M, Warren Y, Mitchell RL, Epstein FH (1964) Effect of protein in tubular fluid upon proximal tubular reabsorption. Proc Soc Exp Biol Med 117:848–850

  42. 42.

    Kinne R, Schmitz JE, Kinne-Saffran E (1971) The localization of the Na+-K+-ATPase in the cells of rat kidney cortex: A study on isolated plasma membranes. Pfluegers Arch 329:191–206

  43. 43.

    Lassen UV, Thaysen JH (1961) Correlation between sodium transport and oxygen consumption in isolated renal tissue. Biochim Biophys Acta 47:616–618

  44. 44.

    Levinsky NG (1977) Pathophysiology of acute renal failure. N Engl J Med Vol 296, No 25: 1453–1463

  45. 45.

    Mason J (1976) Tubulo-glomerular feedback in the early stages of experimental acute renal failure. Kidney Int 10:106–114

  46. 46.

    Mason J (1978) Die Nephronfunktion in der Frühphase des experimentellen akuten Nierenversagens. Habilitation, München

  47. 47.

    Mason J, Beck F, Dörge A, Bauer R, Thurau K (1978) The intracellular electrolyte concentrations of tubular epithelial cells following ischaemia in the rat kidney. Proc VII Int Cong Nephrol K-17

  48. 48.

    Mason J, Takabatake J, Olbricht C, Thurau K (1978) The early phase of experimental acute renal failure. III. Tubulogomerular feedback. Pfluegers Arch 373:69–76

  49. 49.

    Maunsbach AB (1973) Ultrastructure of the proximal tubule. In: Orloff J, Berliner RW, Geiger SR (eds) Handbook of physiology, Sec 8: Renal physiology. Waverly Press, Baltimore, pp 31

  50. 50.

    Mergner WJ, Smith MW, Trump BF (1977) Studies on the pathogenesis of ischemic cell injury. XI P/O ratio and acceptor control. Virchows Arch [Cell Pathol] 26:17–26

  51. 51.

    Myers BD, Brian JC, Yee RR, Hilberman M, Michaels AS (1980) Pathophysiology of hemodynamically mediated acute renal failure in man. Kidney Int 18:495–504

  52. 52.

    Myers WD, Langlinais P, Merrill RH (1977) Glomerular alterations by scanning electron microscopy in acute renal isufficiency in man. 10th Ann Meeting Am Soc Nephrol:77A

  53. 53.

    Neorlén BJ, Engberg A, Källskog Ö, Wolgast M (1978) Nephron function of the transplanted rat kidney. Kidney Int 14:10–20

  54. 54.

    Oken DE, Arce ML, Wilson DR (1966) Glycerol-induced hemoglobinuric acute renal failure in the rat. I. Micropuncture study of the development of oliguria. J Clin Invest 45:724–735

  55. 55.

    Parekh N, Veith U (1981) Renal hemodynamics and oxygen consumption during postischemic acute renal failure in the rat. Kidney Int 19:306–316

  56. 56.

    Pitts R (1965) Physiology of the kidney and body fluids. Year Book Medical Publishers Incorporated, 35 East Wacker Drive, Chicago

  57. 57.

    Randall HM (1969) Effects of acute renal ischemia on aerobic metabolism of dog kidney homogenates. Am J Physiol 217:1413–1418

  58. 58.

    Reimer KA, Jennings RB (1971) Alterations in renal cortex following ischemic injury. II. PHA uptake, O2-consumption, and water content in slices of cortex after ischemia or autolysis. Lab Invest 25:185–195

  59. 59.

    Reimer KA, Ganote CE, Jennings RB (1972) Alterations in renal cortex following ischemic injury. III. Ultrastructure of proximal tubules after ischemia or autolysis. Lab Invest Vol 26:347–363

  60. 60.

    Ruiz-Guinazu A, Coelho JB, Paz RA (1967) Methemoglobin-induced acute renal failure in the rat: in vivo observations, histology and micropuncture measurements of intratubular and postglomerular vascular pressures. Nephron 4:257

  61. 61.

    Schmidt U, Dubach UC (1971) Quantitative Histochemie am Nephron. Oxydoreduktasen und Na-K-stimulierte ATPase. Gustav Fischer, Stuttgart Portland Oregon

  62. 62.

    Schmidt U (1976) Sites of enzyme activity along the nephron. Kidney Int 9:233–242

  63. 63.

    Schmidt U, Horster M (1977) Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 233(1):F55-F60

  64. 64.

    Schnell G (1967) Histometrische Untersuchungen am Glomerulum bei Nieren mit normaler Funktion und bei akutem Nierenversagen. Inaugural Dissertation, Tübingen

  65. 65.

    Schnermann J, Nagel W, Thurau K (1966) Die frühdistale Natriumkonzentration in Rattennieren nach renaler Ischämie und hämorrhagischer Hypotension. Pfluegers Arch 287:296–310

  66. 66.

    Schubert GE (1968) Die pathologische Anatomie des akuten Nierenversagens. Ergeb Allg Pathol [Pathol Anat] 49:1–112

  67. 67.

    Schultz SG (1976) Transport across epithelia: Some basic principles. Kidney Int 9:65–75

  68. 68.

    Sitte P (1965) Beziehungen zwischen Zellstruktur und Stoff-transport in der Niere. In: Wohlfahrt-Bottermann KE (ed) Sekretion und Exkretion. Springer, Berlin Heidelberg New York, pp 343–371

  69. 69.

    Skou JC (1972) The relationship of the (Na++K+)-activated enzyme system to transport of sodium and potassium across the cell membrane. Dioenergetics 4:203–232

  70. 70.

    Solez K, Racusen LC, Whelton A (1981) Glomerular epithelial cell changes in early postischemic acute renal failure in rabbits and man. Am J Pathol 103:163–173

  71. 71.

    Spinelli F, Wirz H, Brucher C, Pehling G (1972) Fine structure of the kidney revealed by scanning electron-microscopy. Ciba-Geigy, Basel, Switzerland

  72. 72.

    Tanner GA, Steinhausen M (1976) Tubular obstruction and ischemia-induced acute renal failure in the rat. Kidney Int 10:565–573

  73. 73.

    Tanner GA, Sophasan S (1976) Kidney pressure after temporary renal artery occlusion in the rat. Am J Physiol 230:1173–1181

  74. 74.

    Thoenes W (1964) Mikromorphologie des Nephron nach temporärer Ischämie, in Zwanglose Abhandlungen aus dem Gebiet der normalen Anatomie und pathologischen Anatomie. Georg Thieme, Stuttgart

  75. 75.

    Thoenes W (1968) Neue Befunde zur Beschaffenheit des basalen Labyrinthes im Nierentubulus. Z Zellforsch 86:351–363

  76. 76.

    Thoenes W, Langer KH, Warning A (1968) Funktionsmorphologische Studien zur energetischen Insuffizienz des Nierentubulus. Untersuchungen an der Rattenniere nach Oberflächenbetropfung mit Kaliumcyanid. Klin Wochenschr 46:696–708

  77. 77.

    Thoenes W, Langer KH (1969) Relationship between cell structures of renal tubules and transport mechanisms. In: Thurau K, Jahrmärker H (eds) Renal transport and diuretics. Springer, Berlin Heidelberg New York, pp 37–65

  78. 78.

    Thurau K (1961) Renal Na-reabsorption and O2-uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc Soc Exp Biol Med 106:714–717

  79. 79.

    Thurau K, Schnermann J (1965) Die Natriumkonzentration an den Macula densa-Zellen als regulierender Faktor für das Glomerulumfiltrat (Mikropunktionsversuche). Klin Wochenschr 43:410–413

  80. 80.

    Ullrich KJ, Radtke HW, Rumrich G (1971) The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney. Pfluegers Arch 330:149–161

  81. 81.

    Ullrich KJ: Renal tubular mechanisms of organic solute transport. Kidney Int 9:134–148

  82. 82.

    Ussing HH (1965) Transport of electrolytes and water across epithelia. Harvey Lect 59:1–30

  83. 83.

    Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: Differences among the S1, S2, and S3 segments. Kidney Int 14:31–49

  84. 84.

    Warning A, Thoenes W (1972) Morphologische Untersuchungen zur Okklusion und Wiedereröffnung proximaler Nierentubuli bei kurzfristiger Ischämie. Virchows Archiv [Cell Pathol] 11:310–325

  85. 85.

    Welling LW, Welling DJ (1976) Shape of epithelial cells and intercellular channels in the rabbit proximal nephron. Kidney Int 9:385–394

  86. 86.

    Whittembury G (May 1960) Ion and water transport in the proximal tubules of the kidney of Necturus maculosus. Gen Physiol, Vol 43, No 5, Part 2:43–53

  87. 87.

    Whittembury G, Rawlins FA, Boulpaep EL (1973) Paracellular pathway in kidney tubules: Electrophysiological and morphological evidence. In: Ussing HH, Thorn NA (eds) Transport mechanism in epithelia. Academic Press, New York, pp 577–588

  88. 88.

    Whittembury G, Grantham JJ (1976) Cellular aspects of renal sodium transport and cell volume regulation. Kidney Int 9:103–120

  89. 89.

    Windhager EE, Giebisch G (1961) Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am J Physiol 200:581–588

  90. 90.

    Windhager EE, Giebisch G (1976) Proximal sodium and fluid transport. Kidney Int 9:121–133

  91. 91.

    Windhager EE, Lewy JE, Spitzer A (1969) Intrarenal control of proximal tubular reabsorption of sodium and water. Nephron 6:247

  92. 92.

    Windhager EE, Whittembury G, Oken DE, Schatzmann HJ, Solomon AK (1959) Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am J Physiol 197:313–318

  93. 93.

    Wollheim E (1978) Das klinische Konzept der tubulären Niereninsuffizienz. Med Welt 29:595–601

Download references

Author information

Correspondence to Dr. H. v. Gise.

Additional information

Dedicated to Professor Dr. Adalbert Bohle in honor of his 60th birthday

This study was supported by the Deutsche Forschungsgemeinschaft (Gi 117/2-2 and Bo 216/22-2)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

v. Gise, H., Klingebiel, T. & Mickeler, E. Acute renal failure — An integrative discussion of morphologic and functional findings. Klin Wochenschr 60, 773–786 (1982). https://doi.org/10.1007/BF01721142

Download citation

Key words

  • Acute renal failure
  • Pathogenesis
  • Reinterpretation
  • Electron-microscopic findings
  • Tubular cell damage
  • Renal fluid compartments

Schlüsselwörter

  • Akutes Nierenversagen
  • Pathogenese
  • Reinterpretation
  • Elektronenmikroskopische Befunde
  • Tubuluszellschädigung
  • Renale Flüssigkeitskompartimente