Advertisement

Operations-Research-Spektrum

, Volume 9, Issue 3, pp 153–159 | Cite as

Outer approximation by polyhedral convex sets

  • R. Horst
  • Ng. V. Thoai
  • H. Tuy
Theoretical Papers

Summary

This paper deals with outer approximation methods for solving possibly multiextremal global optimization problems. A general theorem on convergence is presented and new classes of outer approximation methods using polyhedral convex sets are derived. The underlying theory is then related to the cut map-separator theory of Eaves and Zangwill. Two constraint dropping strategies are deduced.

Keywords

Approximation Method Global Optimization General Theorem Global Optimization Problem Underlying Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Diese Arbeit befaßt sich mit äußeren Approximationsverfahren zur Lösung von möglicherweise multiextremalen globalen Optimierungsproblemen. Ein allgemeiner Konvergenzsatz wird vorgestellt, aus dem sich neue Klassen von Schnittebenenverfahren ableiten lassen. Schließlich wird die dargestellte Theorie in Bezug gesetzt zur Schnittabbildung-Separatoren-Theorie von Eaves und Zangwill. Zwei Strategien zur Reduzierung der Nebenbedingungen werden vorgestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheney EW, Goldstein AA (1959) Newton's method for convex programming and Tchebycheff approximation. Numer Math 1:253–268Google Scholar
  2. 2.
    Eaves BC, Zangwill WI (1971) Generalized cutting plane algorithms. SIAM J Control 9:529–542Google Scholar
  3. 3.
    Falk J, Hoffman KR (1976) A successive underestimation method for concave minimization problems. Math Oper Res 1:251–259Google Scholar
  4. 4.
    Fukushima M (1983) An outer approximation algorithm for solving general convex programs. Oper Res 31:101–113Google Scholar
  5. 5.
    Fukushima M (1984) On the convergence of a class of outer approximation algorithms for convex programs. J Comput Appl Math 10:147–156Google Scholar
  6. 6.
    Hoffman KR (1981) A method for globally minimizing concave functions over convex sets. Math Programm 20:22–32Google Scholar
  7. 7.
    Hogan WW (1973) Applications of a general convergence theory for outer approximation algorithms. Math Programm 5:151–168Google Scholar
  8. 8.
    Kelley JE (1960) The cutting — plane method for solving convex programs. J SIAM 8:703–712Google Scholar
  9. 9.
    Leviting ES, Polyak BT (1966) Constrained minimization methods. USSR Comput Math Math Phys 6:1–50Google Scholar
  10. 10.
    Mayne DQ, Polak E (1984) Outer approximation algorithm for nondifferentiable optimization problems. J Optimization Theory Appl 42:19–30Google Scholar
  11. 11.
    Parikh SC (1976) Approximate cutting planes in nonlinear programming. Math Programm 11:184–198Google Scholar
  12. 12.
    Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton, NJGoogle Scholar
  13. 13.
    Thieu TV, Tarn BT, Ban VT (1983) An outer approximation method for global minimizing a concave function over a compact convex set. Acta Math Vietnam 8:21–40Google Scholar
  14. 14.
    Thoai Ng V (1984) Verfahren zur Lösung konkaver Optimierungsaufgaben. Seminarberichte, Sektion Mathematik der Humboldt-Universität zu Berlin 63Google Scholar
  15. 15.
    Topkis DM (1970) Cutting plane methods without nested constraint sets. Oper Res 18:404–413Google Scholar
  16. 16.
    Tuy H, Horst R (1986) Convergence and restart in branchand-bound algorithms for global optimization. Application to concave minimization and D. C. optimization problems. Preprint University of Trier (submitted for publication)Google Scholar
  17. 17.
    Veinott AF (1967) The supporting hyperplane method for unimodal programming. Oper Res 15:147–152Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • R. Horst
    • 1
  • Ng. V. Thoai
    • 2
  • H. Tuy
    • 2
  1. 1.Fachbereich IV - MathematikUniversität TrierTrierFederal Republic of Germany
  2. 2.Institute of MathematicsHanoiVietnam

Personalised recommendations