Operations-Research-Spektrum

, Volume 15, Issue 2, pp 63–73 | Cite as

Mehrstufige Mehrprodukt-Losgrößenplanung bei beschränkten Ressourcen und genereller Erzeugnisstruktur

  • Horst Tempelmeier
  • Matthias Derstroff
Theoretische Arbeiten

Zusammenfassung

Es wird ein heuristisches Verfahren zur Lösung des mehrstufigen Mehrprodukt-Losgrößenproblems für generelle Erzeugnis- und Prozeßstrukturen unter Beachtung multipler Ressourcen bei deterministisch schwankenden, dynamischen Bedarfen vorgestellt. Dabei werden auch Rüstzeiten berücksichtigt. Das mehrstufige Mehrprodukt-Losgrößenproblem wird mit Hilfe der Lagrange-Relaxation in mehrere unkapazitierte Einprodukt-Losgrößenprobleme überführt, aus deren Lösungen eine untere Schranke des optimalen Zielfunktionswerts abgeleitet wird. Zur Bestimmung einer oberen Schranke wird ein heuristisches Verfahren eingesetzt. Die Güte des Verfahrens wird anhand mehrerer Problemgruppen mit unterschiedlichen Größenordnungen überprüft.

Schlüsselwörter

Losgrößenplanung Kapazitäten Heuristik Lagrange-Relaxation 

Summary

In this paper a heuristic approach for the dynamic multi-level multi-item lotsizing problem in general product structures with multiple constrained resources and setup times is proposed. With the help of Lagrangean relaxation the capacitated multi-level lotsizing problem is decomposed into several uncapacitated single-item lotsizing problems. From the solutions of these single-item problems lower bounds on the minimal objective value are derived. Upper bounds are generated by means of a heuristic finite scheduling procedure. The quality of the approach is tested with reference to various problem groups of differing sizes.

Key words

Lotsizing capacit heuristic Lagrangean-relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bahl HC, Ritzman LP, Gupta JND (1987) Determining lot sizes and resource requirements: A review. Oper Res 35:329–345Google Scholar
  2. 2.
    Billington PJ (1983) Multi-level lot-sizing with a bottleneck work center. Ph.D. Dissertation. Cornell University, Ithaca, New YorkGoogle Scholar
  3. 3.
    Chen W-H, Thizy J-M (1990) Analysis of relaxations for the multi-item capacitated lot-sizing problem. Ann Oper Res 26:29–72Google Scholar
  4. 4.
    Crowder H (1976) Computational improvements for subgradient optimization. Symposia Mathematica 19:357–372Google Scholar
  5. 5.
    Diaby M, Bahl HC, Karwan MH, Zionts S (1992) A lagrangean relaxation approach for very-large-scale capacitated lot-sizing. Manag Sci 38:1329–1340Google Scholar
  6. 6.
    Dixon PS, Silver EA (1981) A heuristic solution procedure for multi-item, single-level, limited capacity lot-sizing problem. J Oper Manag 2:22–39Google Scholar
  7. 7.
    Federgruen A, Tzur M (1991) A simple forward algorithm to solve general dynamic lot sizing models withn periods inO(n logn) orO(n) time. Manag Sci 37:909–925Google Scholar
  8. 8.
    Fisher ML (1981) The lagrangian relaxation method for solving integer programming problems. Manag Sci 27:1–18Google Scholar
  9. 9.
    Fleischmann B (1990) The discrete lot-sizing and scheduling problem. Eur J Oper Res 44:337–348Google Scholar
  10. 10.
    Gupta YP, Keung YK, Gupta MC (1992) Comparative analysis of lot-sizing models for multi-stage systems: A simulation study. Int J Prod Res 30:695–716Google Scholar
  11. 11.
    Heinrich CE (1987) Mehrstufige Losgrößenplanung in hierarchisch strukturierten Produktionsplanungssystemen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Held M, Wolfe P, Crowder HP (1974) Validation of subgradient optimization. Math Prog 6:62–88Google Scholar
  13. 13.
    Lozano S, Larraneta J, Onieva L (1991) Primal-dual approach to the single level capacitated lot-sizing problem. Eur J Oper Res 51:354–366Google Scholar
  14. 14.
    Maes J (1987) Capacitated lotsizing techniques in manufacturing resource planning. Ph.D. Dissertation, Katholieke Universiteit Leuven, Fakulteit der Toegepaste Wetenschappen, LeuvenGoogle Scholar
  15. 15.
    Maes J, Van Wassenhove LN (1986) A simple heuristic for the multi-item single level capacitated lotsizing problem. OR Lett 4:265–273Google Scholar
  16. 16.
    Maes J, Van Wassenhove LN (1991) Capacitated dynamic lotsizing heuristics for serial systems. Int J Prod Res 29:1235–1249Google Scholar
  17. 17.
    Maes J, McClain JO, Van Wassenhove LN (1991) Multilevel capacitated lotsizing complexity and LP-based heuristics. Eur J Oper Res 53:131–148Google Scholar
  18. 18.
    Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New YorkGoogle Scholar
  19. 19.
    Salomon M (1991) Deterministic lotsizing models for production planning. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. 20.
    Shapiro JF (1979) A survey of lagrangean techniques for discrete optimization. Ann Discr Math 5:113–138Google Scholar
  21. 21.
    Tempelmeier H (1992) Material-Logistik. Grundlagen der Bedarfs- und Losgrößenplanung in PPS-Systemen. 2. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Tempelmeier H, Helber S (1993) A heuristic for dynamic multiitem multi-level capacitated lotsizing for general product structures. Eur J Oper Res (forthcoming)Google Scholar
  23. 23.
    Thizy J-M (1991) Analysis of lagrangian decomposition for the multi-item capacitated lot-sizing problem. INFOR 29:271–283Google Scholar
  24. 24.
    Thizy J-M, Van Wassenhove LN (1985) Lagrangean relaxation for multi-item capacitated lot-sizing problem: A heuristic implementation. IIE Trans 17:308–313Google Scholar
  25. 25.
    Trigeiro WW (1987) A dual-cost heuristic for the capacitated lot sizing problem. IIE Trans 19:67–72Google Scholar
  26. 26.
    Trigeiro WW, Thomas LJ, McClain JO (1989) Capacitated lot sizing with setup times. Manag Sci 35:353–366Google Scholar
  27. 27.
    Wagelmans A, Van Hoesel S, Kolen A (1992) Economic lot sizing: AnO(n logn) algorithm that runs in linear time in the Wagner-Whitin case. Oper Res 40:145–155Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Horst Tempelmeier
    • 1
  • Matthias Derstroff
    • 1
  1. 1.Fachgebiet ProduktionswirtschaftTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations