Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The origin of the membrane convolute in degranulating platelets

A comparative study of normal and “gray” platelets

  • 28 Accesses

  • 11 Citations


Thrombin-stimulated normal platelets contain a membrane system of dilated channels with openings to the exterior. Whether these membranes originate from the surface connected system (SCS), the α-granules or internalized portions of the plasmalemma has not yet been defined. The present study traces in series of ultrathin sections the rearrangement of these membranes during shape change, degranulation and internalization of surface membranes in washed normal and “gray” platelets upon the stimulation with thrombin (1 IU/ml). Cationized ferritin (CF) was used as a surface marker in order to recognize internalized portions of the plasmalemma. Within the first seconds after stimulation, both normal and gray platelets changed their shape by extrusion of the SCS membranes. Simultaneously they started to internalize surface membrane and formed surface membrane invaginations closely attached to the outer rim of the cytoskeletal sphere which developed during the internal contraction. CF was internalized in these invaginations. CF was not observed within the system of dilated channels of stimulated platelets, however. Thrombin-stimulated gray platelets showed a markedly reduced number of dilated channels or none at all. This observation may be due to the fact “gray” platelets are deficient in α-granules. It is concluded that the dilated system of membranes in degranulated normal platelets originates from membranes of the α-granules which have performed compound exocytosis.

This is a preview of subscription content, log in to check access.


  1. 1.

    Behnke O (1987) Surface membrane clearing of receptorligand complexes in human blood platelets. J Cell Sci 87: 465–472

  2. 2.

    Berman CL, Yeo EL, Wencel-Drake JD, Furie BC, Ginsberg MH, Furie B (1986) A platelet α-granule membrane protein that is associated with the plasma membrane after activation. J Clin Invest 78: 130–137

  3. 3.

    Berndt MC, Castaldi PA, Gordon S, Halley H, McPherson VJ (1983) Morphological and biochemical confirmation of gray platelet syndrome in two siblings. Aust N Z J Med 13: 387–390

  4. 4.

    Cramer EM, Vainchenker W, Vinci G, Guichard J, Breton-Gorius J (1985) Gray platelet syndrome: Immunoelectron microscopic localization of fibrinogen and von Willebrand Factor in platelets and megakaryocytes. Blood 66: 1309–1316

  5. 5.

    Dierichs R, Patscheke H (1983) Alterations in the cytoskeleton of platelets by stimulation with polycationic ferritin (CF), Thromb Haemost 50: 128

  6. 6.

    Frojmovic MM, Milton JG (1982) Human platelet size, shape and related functions in health and disease. Physiol Rev 62: 185–261

  7. 7.

    Frojmovic MM, Milton JG (1983) Physical, chemical and functional changes folowing platelet activation in normal and “giant” platelets. Blood Cells 9: 359–382

  8. 8.

    Hirano H, Kawakami H (1982) Redistribution of surfacebound ligands in blood platelets as revealed by electron microscopy. Acta Haemat Jpn 45: 1335–1345

  9. 9.

    Kawakami H, Hirano H (1986) Rearrangement of the opencanalicular system of the human blood platelet after incorporation of surface-bound ligands. Cell Tissue Res 245: 465–469

  10. 10.

    Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230: 25–32

  11. 11.

    Köhler M, Hellstern P, Morgenstern E, Mueller-Eckhardt, C, Berberich R, Meiser RJ, Scheffler P, Wenzel E (1985) Gray platelet syndrome: Selective α-granule deficiency and thrombocytopenia due to increased platelet turnover. Blut 50: 331–340

  12. 12.

    Levy-Toledano S, Caen JP, Breton-Gorius J, Rendu F, Cywiner-Golenzer C, Dupuy E, Legrand Y, Maclouf J (1981) Gray platelet syndrome: α-granule deficiency. J Lab Clin Med 98: 831–848

  13. 13.

    Maas J (1981) Morphometrische Untersuchungen zur Ultrastruktur von Blutplättchen unter dem Einfluß unterschiedlicher Präparationsmethoden sowie bei einem genetisch bedingten Enzymdefekt (Lesch-Nyhan-Syndrom). Dissert, Univ Saraviensis

  14. 14.

    Milton JG, Frojmovic MM (1979) Invaginated plasma membrane of human platelets: evagination and measurement in normal and “giant” platelets. J Lab Clin Med 93: 162–198

  15. 15.

    Morgenstern E, Edelmann L (1989) Analysis of dynamic cell processes by rapid freezing and freeze substitution. In: Plattner H (ed) Electron microscopic analysis of subcellular dynamics. CRC Press, Boca Raton, USA (in press)

  16. 16.

    Morgenstern E, Kho A (1977) Morphometrische Untersuchungen an Blutplättchen. Veränderungen der Plättchenstruktur bei Pseudopodienbildung und Aggregation. Cytobiologie 15: 233–249

  17. 17.

    Morgenstern E, Reimers H-J (1984) The platelet contacts during aggregation. Blut 48: 81–90

  18. 18.

    Morgenstern E, Edelmann L, Reimers H-J, Miyashita C, Haurand M (1985) Fibrinogen distribution on surfaces and in organelles of ADP stimulated human blood platelets. Eur J Cell Biol 38: 292–300

  19. 19.

    Morgenstern E, Neumann K, Patscheke H (1987) The exocytosis of human blood platelets. A fast freeze-substitution analysis. Eur J Cell Biol 43: 273–282.

  20. 20.

    Patscheke H (1981) Shape and functional properties of human platelets washed with acid citrate. Haemostasis 10: 14–27

  21. 21.

    Patscheke H, Dierichs R (1986) Surface binding and platelet-activating and agglutinating effects of polycationic ferritin (CF). Thromb Haemost 50: 165

  22. 22.

    Patscheke H, Mathieu G (1987) Monitoring of the platelet α-granule secretion in the aggregation. Thromb Haemost 58: 188

  23. 23.

    Raccuglia G (1971) Gray platelet syndrome. Am J Med 51: 820–828

  24. 24.

    Rosa J-P, George JN, Bainton DF, Nurden AT, Cean JP, McEver RP (1987) Gray platelet syndrome. J Clin Invest 80: 1138–1146

  25. 25.

    Ruf A, Morgenstern E, Janzarik H, Lüscher EF (1986) Morphology of the interaction of collagen fibrils with normal human platelets and thrombasthenic platelets. Thromb Res 44: 477–487

  26. 26.

    Santoso S, Zimmermann U, Neppert J, Mueller-Eckhardt C (1986) Receptor patching and capping of platelet membranes induced by monoclonal antibodies. Blood 67: 343–349

  27. 27.

    Stahl K, Themann H, Dame WR (1978) Ultrastructural morphometric investigations on normal human platelets. Haemostasis 7: 242–251

  28. 28.

    Stenberg PE, McEver RP, Shuman MA, Jaques YV, Bainton DF (1985) A α-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 101: 880–886

  29. 29.

    White JG (1984) The secretory process in platelets. In: Cantin M (ed) Cell biology of the secretory process. S. Karger, Basel, pp 546–569

  30. 30.

    White JG (1979) Ultrastructural studies of the gray platelet syndrome. Am J Pathol 95: 45–462

  31. 31.

    White JG, Krumwiede M (1987) Further studies of the secretory pathway in thrombin-stimulated human platelets. Blood 69: 1196–1203

  32. 32.

    Wurzinger LJ, Wolf M, Langen H (1987) Vergleichende morphometrische und funktionelle Untersuchungen der Thrombozyten von Mensch und Schaf. Verh Anat Ges 81: 781–782

  33. 33.

    Yamazaki H, Suzuki H, Yamamoto N, Tanoue K (1984) Electron microscopic observations on platelet aggregation induced by cationized ferritin. Blood 63: 439–447

Download references

Author information

Correspondence to E. Morgenstern.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morgenstern, E., Patscheke, H. & Mathieu, G. The origin of the membrane convolute in degranulating platelets. Blut 60, 15–22 (1990). https://doi.org/10.1007/BF01720197

Download citation

Key words

  • Blood platelets
  • Exocytosis
  • Gray platelet syndrome
  • Membrane internalization
  • Thrombin stimulation