Advertisement

Operations-Research-Spektrum

, Volume 16, Issue 1, pp 47–52 | Cite as

Stability results for approximately efficient solutions

  • Christiane Tammer
Theoretical Papers

Abstract

We introduce a concept for approximately efficient solutions in vector optimization and compare it with another recent concept given in [8]. Further, we study relations between the set of approximately efficient solutions of a vector optimization problem and the approximate solutions of a corresponding parametric surrogate optimization problem. Finally, we prove stability properties for the scalar surrogate problem.

Key words

Vector optimization approximately efficient solutions stability 

Zusammenfassung

Wir führen ein Konzept für Näherungslösungen in der Vektoroptimierung ein und vergleichen dieses mit einem neuen Konzept aus [8]. Weiterhin untersuchen wir Beziehungen zwischen der Menge der Näherungslösungen eines Vektoroptimierungsproblems und den Näherungslösungen eines entsprechenden parametrischen Ersatzproblems. Schließlich beweisen wir Stabilitätseigenschaften des skalaren Ersatzproblems.

Schlüsselwörter

Vektoroptimierung Näherungslösungen Stabilität 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank B, Guddat J, Klatte D, Kummer B, Tammer K (1982) Nonlinear parametric optimization. Akademie-Verlag, BerlinCrossRefGoogle Scholar
  2. 2.
    Brosowski B, Conci A (1983) On vector optimization and parametric programming. Segundas Jornados Latino Americans de Matematica. Aplicada 2:483–495Google Scholar
  3. 3.
    Ester J (1987) Systemanalyse und mehrkriterielle Entscheidung. Verlag Technik, BerlinGoogle Scholar
  4. 4.
    Gerstewitz(Tammer) Chr (1983) Nichtkonvexe Dualität in der Vektoroptimierung. Wiss Zeitschr TH Leuna-Merseburg 25(3):357–364Google Scholar
  5. 5.
    Gerth(Tammer) Chr (1987) Näherungslösungen in der Vektoroptimierung. Seminarbericht der Sektion Mathematik der Humboldt-Universität zu Berlin 90:67–76Google Scholar
  6. 6.
    Gerth(Tammer) Chr, Weidner P (1990) Nonconvex separation theorems and some applications in vector optimization. J Opt Theory Appl 67(2):297–320CrossRefGoogle Scholar
  7. 7.
    Helbig S (1992) Quantitative and qualitative stability of a scalarization method, I. to appear in: Guddat J et al. Parametric Optimization and Related Topics III, Lang Verlag, Frankfurt am MainGoogle Scholar
  8. 8.
    Helbig S, Georgiev PG, Patewa D, Todorow M (1992)ɛ-Efficient elements. Lecture on the conference Multicriteria Decision in Fehrenbach, GermanyGoogle Scholar
  9. 9.
    Loridan P (1984)ɛ-Solutions in vector minimization problems. J Opt Theory Appl 43(2):265–276CrossRefGoogle Scholar
  10. 10.
    Luc DT (1989) Theory of vector optimization. Lee Notes Econ Math Syst Vol 319. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Nemeth AB (1989) Between pareto efficiency and paretoɛ-efficiency. Optimization 20(5):615–637CrossRefGoogle Scholar
  12. 12.
    Pascoletti A, Serafini P (1984) Scalarizing vector optimization problems. J Opt Theory Appl 42:499–524CrossRefGoogle Scholar
  13. 13.
    Podinovskii VV, Nogin VD (1982) Pareto-optimal solutions of multicriterial problems. Nauka, Moscow (in russ.)Google Scholar
  14. 14.
    Staib T (1988) On two generalization of pareto minimality. J Opt Theory Appl 59:289–306CrossRefGoogle Scholar
  15. 15.
    Sterna-Karwat A (1987) Continuous dependence of solutions on a parameter in a scalarization method. J Opt Theory Appl 55(3):417–434CrossRefGoogle Scholar
  16. 16.
    Tammer Chr (1992) A generalization of Ekeland's variational principle. Optimization 25:129–141CrossRefGoogle Scholar
  17. 17.
    Valyi I (1986) On approximate vector optimization. Working Paper 86-7, IIASA LaxenburgGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Christiane Tammer
    • 1
  1. 1.Department of Mathematics and InformaticsMartin-Luther-Universität Halle-WittenbergHalle/SaaleGermany

Personalised recommendations