Operations-Research-Spektrum

, Volume 15, Issue 4, pp 205–215 | Cite as

Tabu search for the job-shop scheduling problem with multi-purpose machines

  • Johann Hurink
  • Bernd Jurisch
  • Monika Thole
Theoretical Papers

Abstract

In this paper we study the following generalization of the job-shop scheduling problem. Each operation can be performed by one machine out of a set of machines given for this operation. The processing time does not depend on the machine which has been chosen for processing the operation. This problem arises in the area of flexible manufacturing. As a generalization of the jobshop problem it belongs to the hardest problems in combinatorial optimization. We show that an application of tabu search techniques to this problem yields excellent results for benchmark problems.

Key words

Job-shop scheduling tabu search flexible manufacturing 

Zusammenfassung

In dieser Arbeit behandeln wir die folgende Verallgemeinerung des Job-Shop Scheduling Problems. Jede Operation kann auf einer beliebigen Maschine aus einer Menge von Maschinen, die für diese Operation gegeben ist, bearbeitet werden. Die Bearbeitungszeit hängt dabei nicht von der gewählten Maschine ab. Das in dieser Arbeit behandelte Problem tritt im Bereich der flexiblen Fertigung auf. Als Verallgemeinerung des klassischen Job-Shop Problems gehört es zu den schwierigsten Problemen aus dem Bereich der kombinatorischen Optimierung. Wir zeigen, daß eine Anwendung der Tabu-Search Metaheuristik hervorragende Ergebnisse für die von uns untersuchten Testprobleme liefert.

Schlüsselwörter

Job-Shop Scheduling Tabu Suche Flexible Fertigung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job-shop scheduling. Manag Sci 34:391–401Google Scholar
  2. Applegate D, Cook W (1991) A computational study of the job shop scheduling problem. ORSA J Comput 3:149–156Google Scholar
  3. Brandimarte P (1993) Routing and scheduling in a flexible job schop by tabu search. Ann Ope Res 41:157–183Google Scholar
  4. Brucker P, Jurisch B, Sievers B (1992) A branch and bound algorithm for the job-shop scheduling problem. Osnabrücker Schriften zur Mathematik, Reihe D, Heft 136 (to appear in: Discr Appl Math)Google Scholar
  5. Brucker P, Schlie R (1990) Job-shop scheduling with multi-purpose machines. Computing 45:369–375Google Scholar
  6. Carlier J, Pinson E (1989) An algorithm for solving the job-shop problem. Manag Sci 35:164–176Google Scholar
  7. Carlier J, Pinson E (1990) A practical use of Jackson's preemptive schedule for solving the job shop problem. Ann Oper Res 26:269–287Google Scholar
  8. Dell'Amico M, Trubian M (1993) Applying tabu search to the job-shop scheduling problem. Ann Oper Res 41:231–252Google Scholar
  9. Fisher H, Thompson GL (1963) Probabilistic learning combinations of local job-shop scheduling rules. In: Muth JF, Thompson GL (eds) Industrial scheduling. Prentice Hall, Englewood Cliffs, pp 225–251Google Scholar
  10. Glover F (1989) Tabu search, Part I. ORSA J Comput 1:190–206Google Scholar
  11. Glover F (1990) Tabu search, Part II. ORSA J Comput 2:4–32Google Scholar
  12. Graboswski J, Nowicki E, Zdrazalka S (1986) A block approach for single machine scheduling with release dates and due dates. Eur J Oper Res 26:278–285Google Scholar
  13. Graham RL (1966) Bounds for certain multiprocessing anomalies. Bell Syst Tech J 45:1563–1581Google Scholar
  14. Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deterministic sequencing and scheduling: a Survey. Ann Disc Math 5:287–326Google Scholar
  15. Hurink J (1992) Polygon scheduling. Dissertation, Fachbereich Mathematik/Informatik, Universität OsnabrückGoogle Scholar
  16. Jurisch B (1992) Scheduling jobs in shops with multi-purpose machines. Dissertation, Fachbereich Mathematik/Informatik, Universität OsnabrückGoogle Scholar
  17. Laarhoven PJM van, Aarts EHL, Lenstra JK (1992) Job shop scheduling by simulated annealing. Oper Res 40:113–125Google Scholar
  18. Meyer W (1992) Geometrische Methoden zur Lösung von Job-Shop Problemen und deren Verallgemeinerungen, Dissertation, Fachbereich Mathematik/Informatik, Universität OsnabrückGoogle Scholar
  19. Ow PS, Morton TE (1989) The single machine early/tardy problem. Manag Sci 35:177–191Google Scholar
  20. Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization. Prentice Hall, Englewood CliffsGoogle Scholar
  21. Roy B, Sussmann B (1964) Les problèmes d'ordonnancement avec contraintes disjonctives, Note DS no. 9 bis, SEMA, ParisGoogle Scholar
  22. Salvador MS (1973) A solution of a special class of flowshop scheduling problems. Proceedings of the Symposium on the Theory of Scheduling and its Applications. Springer, Berlin Heidelberg New York, pp 83–91Google Scholar
  23. Thole M (1993) Lösung von Multi-Purpose Job-Shop Problemen durch Tabu-Suche, Diplomarbeit, Fachbereich Mathematik/ Informatik, Universität OsnabrückGoogle Scholar
  24. Werner F, Winkler A (1991) Insertion techniques for the heuristic solution of the job shop problem. TU Magdeburg, Preprint 26/91Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Johann Hurink
    • 1
  • Bernd Jurisch
    • 2
  • Monika Thole
    • 1
  1. 1.Fachbereich Mathematik/InformatikUniversität OsnabrückOsnabrückGermany
  2. 2.Faculty of Business AdministrationMemorial University of NewfoundlandNewfoundlandCanada

Personalised recommendations