Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular marker analysis ofSalmonella typhimurium from surface waters, humans, and animals

  • 27 Accesses

  • 13 Citations

Abstract

Salmonella contamination of North Sea water was detected for the first time in 1988 in Germany during routine examinations of bathing areas. Since then, subsequent isolations along the coast have been reported regularly. To define the source of contamination, strains isolated from seawater and rivers were studied by molecular marker methods. Their properties were compared with those of strains originating from possible sources of contamination such as humans, cattle, and sewage treatment plant water. Plasmid profile analysis of whole bacterial populations and the determination of antibiotic resistance patterns demonstrated, that contamination through the surrounding cattle industry could be excluded. Cattle isolates belonged to a widespread clone of phage type 204c which was multiresistant and exhibited an unique plasmid pattern which was never found in sea water isolates. Outer membrane protein and lipopolysaccharide analysis failed to demonstrate differences among theSalmonella populations and proved in this case insufficient for molecular marker discrimination.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Achtman M, Mercer A, Kusecek B, Pohl A, Heuzenroeder M, Aaronson W, Sutton A, Silver RP. Six widespread bacterial clones amongEscherichia coli Kl isolates. Infect Immun 1983; 39: 315–335.

  2. 2.

    Aleksic S, Bockemühl J, Havemeister G, Heinemeyer E-A, M üller HE, von Pritzbuer E. Badegewässerüberwachung nach der Richtlinie des Rates der EG vom 08.12.1975 über die Qualität der Badegewässer. Zbl Hyg 1991; 192: 57–75.

  3. 3.

    Altwegg M, Hickman-Brenner FW, Farmer III JJ. Ribosomal RNA gene restriction patterns provide increased sensitivity for typingSalmonella typhi strains. J Infect Dis 1989; 160: 145–149.

  4. 4.

    Anderson ES, Ward LR, de Saxe MJ, de Sa JDH. Bacteriophage-typing designations ofSalmonella typhimurium. J Hyg 1977; 78: 297–300.

  5. 5.

    Arbeit RD, Arthur M, Dunn R, Kim C, Selander RK, Goldstein R. Resolution of recent evolutionary divergence amongEscherichia coli from related lineages: The application of pulsed field electrophoresis to molecular epidemiology. J Infect Dis 1990; 161: 230–235.

  6. 6.

    Baird-Parker AC. Foodborne illness. Foodborne salmonellosis. Lancet 1990; 336: 1231–1235.

  7. 7.

    Briese H-H, Heinemeyer E-A. Badewasserhygiene an der nieders ächsischen Nordseeküste. Niedersächsisches Ärzteblatt 1989; 5: 12–14.

  8. 8.

    Brunner F, Margadant A, Peduzzi R, Piffaretti J-C. The plasmid pattern as an epidemiologic tool forSalmonella typhimurium epidemics: Comparison with the lysotype. J Infect Dis 1983; 148: 7–11.

  9. 9.

    Duguid JP, Anderson ES, Alfredsson GA, Barker R, Old DC. A new biotyping scheme forSalmonella typhimurium and its phylogenetic significance. J Med Microbiol 1975; 8: 149–166.

  10. 10.

    Farrell JB, Salotta BV, Venosa AD. Reduction in bacterial densities of wastewater solids by three secondary treatment processes. Res J Water Poll Contr Fed 1990; 62: 177–184.

  11. 11.

    Gärtner H, Havemeister G, Waldvogel B, Wuthe HH. Qualitative and quantitativeSalmonella investigations and their hygienic valuation in connection with the E. coli titre, demonstrated with examples from the coastal waters of Kiel Bight (Western Baltic Sea). Zbl Bakteriol Hyg 1975; 160: 246–267.

  12. 12.

    Gautier Y, Collet M. Study ofSalmonellae in sewage of Chambery town; epidemiological relations and efficiency of water treatment plant. Rev Epidemiol Sant é Publique 1980; 28: 443–460.

  13. 13.

    Helmuth R. Increase of drug resistance after prophylactic and therapeutic use of antimicrobial agents in livestock. In: Schwarzer C, Mulder RWAW (eds), Prevention and control of potentially pathogenic microorganisms in poultry and poultry meat processing. Flair No. 7, Antimicrobial Agents, 1992.

  14. 14.

    Helmuth R, Montenegro MA, Steinbeck A, Seiler A, Pietzsch O. Molekularbiologische Methoden zur epidemiologischen Feincharakterisierung von Krankheitserregern am Beispiel vonSalmonella enteritidis aus Geflügel. Berl Münch Tierärztl Wschr 1990; 103: 416–421.

  15. 15.

    Helmuth R, Stephan R, Bunge C, Hoog B, Steinbeck A, Bulling E. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven commonSalmonella serotypes. Infect Immun 1985; 48: 175–182.

  16. 16.

    Hinton M, Bale MJ. Bacterial pathogens in domesticated animals and their environment. J Appl Bacteriol Symp 1991; 70 (suppl): 81s-90s.

  17. 17.

    Hitchcock PJ, Brown TM. Morphological heterogeneity amongSalmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 1983; 154: 269–277.

  18. 18.

    Holmberg SD, Wachsmuth IK, Hickman-Brenner FW, Cohen ML. Comparison of plasmid profile analysis, phage typing, and antimicrobial susceptibility testing in characterizingSalmonella typhimurium isolates from outbreaks. J Clin Microbiol 1984; 19: 100–104.

  19. 19.

    Kado CI, Liu S-T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 1981; 145: 1365–1373.

  20. 20.

    Kampelmacher EH, van Noorle Jansen LM.Salmonella in effluent from sewage treatment plants, wastepipe of butcher's shops and surface water in Walcheren. Zbl Bakteriol Orig B 1976; 162: 307–319.

  21. 21.

    Kapperud G, Lassen J, Dommarsnes K, Kristiansen B-E, Caugant DA, Ask E, Jahkola M. Comparison of epidemiological marker methods for identification ofSalmonella typhimurium isolates from an outbreak caused by contaminated chocolate. J Clin Microbiol 1989; 27: 2019–2024.

  22. 22.

    Krug W, Rehm N. Nutzen-Kosten-Analyse der Salmonellosebekämpfung. In Schriftenreihe des Bundesministers für Jugend, Familie and Gesundheit, Volume 131, 1983.

  23. 23.

    Kawahara K, Hamaoka T, Suzuki S, Nakamura M, Murayama SY, Arai T, Terakado N, Danbara H. Lipopolysaccharide alteration mediated by the virulence plasmid ofSalmonella. Microbial Pathogenesis 1989; 7: 195–202.

  24. 24.

    Kayser R, Boll R, Muller HE. Quantitative determinations of the elimination of So/monellae by biological treatment of waste water. Zbl Bakteriol Mikrobiol Hyg, B 1987; 184: 195–205.

  25. 25.

    Lurz R. Personal communication, 1991.

  26. 26.

    Maas R. An improved colony hybridization method with significantly increased sensitivity for detection of single genes. Plasmid 1983; 10: 296–298.

  27. 27.

    Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, 1982.

  28. 28.

    Mitchell E, O'Mahoney M, Lynch D, Ward LR, Rowe B, Uttley A, Rogers T, Cunningham DG, Watson R. Large outbreak of food poisoning caused bySalmonella typhimurium definitive type 49 in mayonnaise. Br Med J 1989; 298: 99–101.

  29. 29.

    Montenegro MA, Morelli G, Helmuth R. Heteroduplex analysis ofSalmonella virulence plasmids and their prevalence in isolates of defined sources. Microbial Path 1991; 11: 391–397.

  30. 30.

    Morinigo MA, Cornax R, Castro D, Jimenez-Notaro M, Romero P, Borrego JJ. Antibiotic resistance ofSalmonella strains isolated from natural polluted waters. J Appl Bacteriol 1990; 68: 297–302.

  31. 31.

    O'Brien TF, Hopkins JD, Gilleece ES, Medeiros AA, Kent RL, Blackburn BO, Holmes MB, Reardon JP, Vergeront JM, Schell WL, Christenson E, Bissett ML, Morse EV. 1982. Molecular epidemiology of antibiotic resistance inSalmonella from animals and human beings in the United States. New Engl J Med 1982; 307: 1–6.

  32. 32.

    Old DC, Barker RM. Persistent and transient clones ofSalmonella typhimurium phage type 141 recognized by biotyping. Epidemiol Infect 1989; 102: 113–118.

  33. 33.

    Rasch G. Infektionskrankheiten in Deutschland. Bonn: Bundesgesundheitsamt. Bundesgesundheitsblatt 1992; 5: 230–234.

  34. 34.

    Reilly WJ, Forbes GI, Paterson GM, Sharp JCM. Human and animal salmonellosis in Scotland associated with environmental contamination, 1973–79. Vet Record 1981; 108: 553–555.

  35. 35.

    Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 1986; 51: 873–884.

  36. 36.

    Soldati L, Piffaretti JC. Molecular typing ofShigella strains using pulsed field gel electrophoresis and genome hybridization with insertion sequences. Res Microbiol 1991; 142: 489–498.

  37. 37.

    Stull TL, LiPuma JJ, Edlind. TD. A broad-spectrum probe for molecular epidemiology of bacteria: Ribosomal RNA. J Infect Dis 1988; 157: 280–286.

  38. 38.

    Teitge E, Gerhardt GG, Gundermann KO. Quantitative studies ofSalmonella at two sewage purification plants in Schleswig-Holstein. Zbl Bakteriol Mikrobiol. Hyg B 1986; 182: 120–130.

  39. 39.

    Threlfall EJ, Frost JA. A review: The identification, typing and fingerprinting ofSalmonella: laboratory aspects and epidemiological applications. J Appl Bacteriol 1990; 68: 5–16.

  40. 40.

    Rowe B, Threlfall JE, Ward LR, Ashley AS. International spread of multiresistant strains ofSalmonella typhimurium phage types 204 and 193 from Britain to Europe. Veterinary Record 1979; 105: 468–469.

  41. 41.

    Tobias H, Heinemeyer E-A. Personal communication, 1992.

  42. 42.

    Todd E. Foodborne illness: Epidemiology of foodborne illness: North America. Lancet 1992; 336: 788–793.

  43. 43.

    Tsai C-M, Frasch CE. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982; 119: 115–119.

  44. 44.

    World Health Organization. WHO surveillance programme for control of foodborne infections and intoxications in Europe. Newsletter. No. 23, 1990.

Download references

Author information

Correspondence to R. Helmuth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graeber, I., Montenegro, M.A., Bunge, C. et al. Molecular marker analysis ofSalmonella typhimurium from surface waters, humans, and animals. Eur J Epidemiol 11, 325–331 (1995). https://doi.org/10.1007/BF01719438

Download citation

Key words

  • Multi-resistance
  • Plasmid typing
  • Phage type 204c
  • Salmonella typhimurium
  • Sewage