Advertisement

Klinische Wochenschrift

, Volume 67, Issue 17, pp 858–864 | Cite as

Sympathetic modulation of renal hemodynamics, renin release and sodium excretion

  • H. Kirchheim
  • H. Ehmke
  • P. Persson
Article

Summary

In anesthetized animals it has been shown previously, that the influence of electrical stimulation of efferent renal nerves on renal function with increasing stimulation frequencies can be graded; renin release is affected at low, sodium excretion at intermediate and vascular resistance at high stimulation frequencies.

Experiments in conscious dogs are reviewed, which present evidence for a similar functional dissociation under physiological conditions.

Moderate activations of the renal sympathetic nerves, which do not change renal blood flow 1) decrease sodium excretion independent of changes in angiotensin II, 2) interact with the pressure-dependent mechanism of renin release by resetting its threshold pressure and 3) modulate autoregulation by increasing the lower limits of glomerular filtration rate and renal blood flow-autoregulation.

These findings may contribute to our understanding of the role of the renal nerves in the pathophysiology of congestive heart failure and hypertension.

Key words

Renal sympathetic nerves Renin angiotension system Autoregulation Renal blood flow Glomerular filtration rate Sodium excretion Baroreceptor reflexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard C (1859) Lecons sur les propriétés physiologiques et les altérations pathologiques des liquides de l'organisme. JB Baillière et Fils, Paris, pp 171–176Google Scholar
  2. Berne RM (1952) Hemodynamics and sodium excretion of denervated kidney in anesthetized and unanesthetized dog. Am J Physiol 171:148–158Google Scholar
  3. Bradford JR (1889) The innervation of the renal blood vessels. J Physiol (Lond) 10:358–407Google Scholar
  4. Cohnheim J, Roy CS (1883) Untersuchungen über die Cirkulation in den Nieren. Virchows Arch Pathol Anat Physiol Klin Med 92:424–448Google Scholar
  5. DiBona GF (1982) The functions of the renal nerves. Rev Physiol Biochem Pharmacol 94:76–181Google Scholar
  6. Ehmke H, Persson P, Kirchheim H (1987) A physiological role for pressure-dependent renin release in long-term blood pressure control. Pflügers Arch 410:450–456Google Scholar
  7. Ehmke H, Persson P, Fischer S, Hackenthal E, Kirchheim H (1989) Resetting of pressure-dependent renin release by intrarenal alpha1-adrenoceptors in conscious dogs. Pflügers Arch 413:261–266Google Scholar
  8. Eide I, Loyning E, Kiil F (1973) Evidence for hemodynamic autoregulation of renin release. Circ Res 32:237–245Google Scholar
  9. Farhi ER, Cant JR, Barger AC (1982) Interaction between intrarenal epinephrine receptors and the renal baroreceptor in the control of PRA in conscious dogs. Circ Res 50:477–485Google Scholar
  10. Fahri ER, Cant JR, Barger AC (1983) Alterations of renal baroreceptor by salt intake in control of plasma renin activity in conscious dogs. Am J Physiol 245:F119-F122Google Scholar
  11. Fahri ER, Cant JR, Paganelli WC, Dzau VJ, Barger AC (1987) Stimulus-response curve of the renal baroreceptor: effect of converting enzyme inhibition and changes in salt intake. Circ Res 61:670–677Google Scholar
  12. Finke R, Gross R, Hackenthal E, Huber J, Kirchheim H (1983) Threshold pressure for the pressure-dependent renin release in the autoregulating kidney of conscious dogs. Pflügers Arch 399:102–110Google Scholar
  13. Gibbons GH, Dzau VJ, Farhi ER, Barger AC (1984) Interaction of signals influencing renin release. Ann Rev Physiol 46:291–308Google Scholar
  14. Gottschalk CW, Moss NG, Colindres RE (1985) Neural control of renal function in health and disease. In: Seldin DW, Giebisch G. The kidney: physiology and pathophysiology. Raven Press, New York, pp 613–644Google Scholar
  15. Gross R, Ruffmann K, Kirchheim H (1979) The separate and combined influences of common carotid occlusion and nonhypotensive hemorrhage on kidney blood flow. Pflügers Arch 379:81–88Google Scholar
  16. Gross R, Kirchheim H (1980) Effects of bilateral carotid occlusion and auditory stimulation on renal blood flow and sympathetic nerve activity in conscious dogs. Pflügers Arch 383:233–239Google Scholar
  17. Gross R, Hackenberg HM, Hackenthal E, Kirchheim H (1981a) Interaction between perfusion pressure and sympathetic nerves in renin release by carotid baroreflex in conscious dogs. J Physiol (London) 313:237–250Google Scholar
  18. Gross R, Kirchheim H, Ruffmann K (1981b) Effect of carotid occlusion and of perfusion pressure on renal function in conscious dogs. Circ Res 48:777–784Google Scholar
  19. Guyton AC, Manning RD Jr, Hall JE, Norman RA Jr, Young DB, Pan Y (1984) The pathogenetic role of the kidney. J Cardiovasc Pharmacol 6 (Suppl I):S151-S161Google Scholar
  20. Kirchheim H (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176Google Scholar
  21. Kirchheim H (1983) Regulation of renal hemodynamics in congestive heart failure. In: Vasodilators in Chronic Heart Failure. Ed by Just H and Bussmann WD, Springer, Berlin Heidelberg New York, pp 36–46Google Scholar
  22. Kirchheim H, Finke R, Hackenthal E, Löwe W, Persson P (1985) Baroreflex sympathetic activation increases threshold pressure for the pressure dependent renin release in conscious dogs. Pflügers Arch 405:127–135Google Scholar
  23. Kirchheim H, Ehmke H, Hackenthal E, Löwe W, Persson P (1987) Autoregulation of renal blood flow, glomerular filtration rate and renin release in conscious dogs. Pflügers Arch 410:441–449Google Scholar
  24. Kirchheim H, Ehmke H, Persson P (1988) Physiology of the renal baroreceptor-mechanisms of renin release and its role in congestive heart failure Am J Cardiol 62:68E-71EGoogle Scholar
  25. Morita H, Vatner SF (1985) Effects of hemorrhage on renal nerve activity in conscious dogs. Cir Res 57:788–793Google Scholar
  26. Persson P, Ehmke H, Kirchheim H (1988a) Influence of the renin-angiotensin-system on the autoregulation of renal blood flow and glomerular filtration rate in conscious dogs. Acta Physiol Scand 134:1–7Google Scholar
  27. Persson P, Ehmke H, Nafz B, Kirchheim H (1988b) Einfluß des Sympathikus auf die renale Autoregulation am wachen Hund. Nieren- und Hochdruckkrankheiten 17 (Heft 9):336Google Scholar
  28. Persson P, Ehmke H, Kögler U, Kirchheim H (1989) Modulation of natriuresis by sympathetic nerves and angiotensin II in conscious dogs. Am J Physiol 256:F485-F489Google Scholar
  29. Smith HW (1951) The Kidney. Structure and Function in Health and Disease. Oxford University Press, New YorkGoogle Scholar
  30. Thames MD (1984) Renin release: Reflex control and adrenergic mechanisms. J Hypertension 2 (Suppl 1):57–66Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • H. Kirchheim
    • 1
  • H. Ehmke
    • 1
  • P. Persson
    • 1
  1. 1.I. Physiologisches Institut der Universität HeidelbergGermany

Personalised recommendations