Infection

, Volume 22, Issue 3, pp 187–192 | Cite as

Carriage of antibiotic-resistantEscherichia coli by healthy volunteers during a 15-week period

  • Nancy London
  • R. Nijsten
  • A. v. d. Bogaard
  • E. Stobberingh
Originalia

Summary

Escherichia coli strains (n=678 and n=670) isolated from faecal samples from 90 and 93 healthy volunteers of two cities, Weert and Roermond respectively, were analysed for their susceptibility to 12 antimicrobial agents during a 15-week period. Significant differences between both cities in the distribution of the MIC values were observed for apramycin, chloramphenicol, kanamycin, neomycin, nitrofurantoin, sulfamethoxazole and trimethoprim. For Weert (n=678) the antibiotic resistance percentages varied from 0.4% for nalidixic acid to 26.7% for sulfamethoxazole. For Roermond (n=670) the figures varied from 0.6% for nitrofurantoin to 37.5% for sulfamethoxazole. Resistance to amoxicillin/clavulanate was not found in either city. The most frequent pattern was resistance to sulfamethoxazole only, followed by resistance to oxytetracycline, streptomycin and sulfamethoxazole. In each individual there was only a small variation in resistance patterns of the isolates, i. e. the majority had one (n=51) or two (n=63) patterns with a maximum of five during the 15-week period. A fully susceptible pattern was found in the strains from 38 individuals.

Trägertum Antibiotika-resistenterEscherichia coli bei gesunden Freiwilligen während 15 Wochen

Zusammenfassung

Stämme vonEscherichia coli, (n=678 und n=670), die aus Stuhlproben von jeweils 90 und 93 gesunden Freiwilligen aus zwei Städten, Weert und Roermond, gewonnen wurden, wurden auf ihre Empfindlichkeit gegenüber 12 antimikrobiellen Substanzen geprüft. Die Untersuchung lief über 15 Wochen. Für Apramycin, Chloramphenicol, Kanamycin, Neomycin, Nitrofurantoin, Sulfamethoxazol und Trimethoprim fanden sich zwischen den beiden Städten signifikante Unterschiede in den MHK-Werten. Für Weert (n=678) fanden sich Resistenzraten, die von 0,4% bei Nalidixinsäure bis 26,7% für Sulfamethoxazol reichten. In Roermond (n=670) variierten die Resistenzraten von 0,6% für Nitrofurantoin bis 37,5% für Sulfamethoxazol. In keiner der beiden Städte fand sich Resistenz gegenüber Amoxicillin-Clavulansäure. Als häufigstes Muster fand sich Resistenz gegen Sulfamethoxazol allein, es folgten Resistenz gegen Oxytetracyklin, Streptomycin und Sulfamethoxazol. Die intraindividuellen Resistenzmuster der Isolate variierten nur sehr wenig, das heißt, die meisten hatten Resistenz gegen ein (n=51) oder zwei (n=63) Antibiotika, maximal fünf während der 15 Wochen. Bei 38 Personen zeigten alle Stämme volle Empfindlichkeit gegen die Testsubstanzen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kunin, C. M., Johansen, K. S., Worning, A. M., Daschner, F. D. Report of a symposium on use and abuse of antibiotics worldwide. Rev. Infect. Dis. 12 (1990) 12–19.Google Scholar
  2. 2.
    Marr, J. J., Moffet, H. L., Kunin, C. M. Guidelines for improving the use of antimicrobial agents in hospitals: a statement by the infectious diseases society of America. J. Infect. Dis. 157 (1988) 869–876.Google Scholar
  3. 3.
    Murray, B. E. New aspects of antimicrobial resistance and the resulting therapeutic dilemmas. J. Infect. Dis. 163 (1991) 1185–1194.Google Scholar
  4. 4.
    Hirai, K., Aoyama, H., Suzue, S., Irikura, T., Iyobe, S., Mitsuhashi, S. Isolation and characterization of norfloxacin-resistant mutants ofEscherichia coli K-12. Antimicrob. Agents Chemother. 30 (1986) 248–253.Google Scholar
  5. 5.
    Yoshida, H., Bogaki, M., Nakamura, M., Nakamura, S. Quinolone resistance-determining region in the DNA gyrase gyrA gene ofEscherichia coli. Antimicrob. Agents Chemother. 34 (1990) 1271–1272.Google Scholar
  6. 6.
    Gutmann, L., Kitzis, D., Billot-Klein, D., Goldstein, F., Tran Van Nhieu, G., Lu, T., Carlet, J., Collatz, E., Williamson, R. Plasmid-mediated β-Lactamase (TEM-7) involved in resistance to ceftazidime and aztreonam. Rev. Infect. Dis. 10 (1988) 860–866.Google Scholar
  7. 7.
    Jacoby, G. A., Archer, G. L. New mechanisms of bacterial resistance to antimicrobial agents. N. Engl. J. Med. 324 (1991) 601–612.Google Scholar
  8. 8.
    Neu, H. C. The emergence of bacterial resistance and its influence on empiric therapy. Rev. Infect. Dis. 5 (Suppl.) (1983) S9-S20.Google Scholar
  9. 9.
    Cooksey, R., Swenson, J., Clark, N., Gay, E., Thornsberry, C. Patterns and mechanisms of β-lactam resistance among isolates ofEscherichia coli from hospitals in the United States. Antimicrob. Agents Chemother. 34 (1990) 739–745.Google Scholar
  10. 10.
    Datta, N., Dacey, S., Hughes, V., Knight, S., Richards, H., Williams, G., Casewell, M., Shannon, K. Distribution of genes for trimethoprim and gentamicin resistance in bacteria and their plasmids in a general hospital. J. Gen. Microbiol. 118 (1980) 495–508.Google Scholar
  11. 11.
    Fisher, G. M., Kelsey, M. C., Cooke, E. M. An investigation of the spread of gentamicin resistance in a district general hospital. J. Med. Microbiol. 22 (1986) 69–77.Google Scholar
  12. 12.
    Mayer, K. H., Fling, M. E., Hopkins, J. D., O'Brien, T. F. Trimethoprim resistance in multiple genera ofEnterobacteriaceae at a U.S. hospital: spread of the type II dihydrofolate reductase gene by a single plasmid. J. Infect. Dis. 151 (1985) 783–790.Google Scholar
  13. 13.
    Møller, J. K., Bak, A. L., Bülow, P., Christiansen, C., Christiansen, G., Stenderup, A. Transferable and non-transferable drug resistance in enteric bacteria from hospital and from general practice. Scand. J. Infect. Dis. 8 (1976) 112–116.Google Scholar
  14. 14.
    Seetulsingh, P. S., Hall, L. M. C., Livermore, D. M. Activity of clavulanate combinations against TEM-1 β-lactamase-producingEscherichia coli isolates obtained in 1982 and 1989. J. Antimicrob. Chemother. 27 (1991) 749–759.Google Scholar
  15. 15.
    Brumfitt, W., Reeves, D. S., Faiers, M. C., Datta, N. Antibiotic-resistantEscherichia coli causing urinary-tract infection in general practice: relation to faecal flora. Lancet i (1971) 315–317.Google Scholar
  16. 16.
    Gillespie, W. A., Lee, P. A., Linton, K. B. Antibiotic resistance of coliform bacilli in urinary infection acquired by women outside hospital. Lancet ii (1971) 675–677.Google Scholar
  17. 17.
    Towner, K. J., Wise, P. J. Transferable resistance plasmids as a contributory cause of increasing trimethoprim resistance in general practice. J. Antimicrob. Chemother. 11 (1983) 33–39.Google Scholar
  18. 18.
    Bonten, M., Stobberingh, E., Philips, J., Houben, A. Antibiotic resistance ofEscherichia coli in faecal samples of healthy people in two different areas in an industrialised country. Infection 20 (1992) 258–262.Google Scholar
  19. 19.
    Linton, K. B., Lee, P. A., Richmond, M. H., Gillespie, W. A. Antibiotic resistance and transmissible R-factors in the intestinal coliform flora of healthy adults and children in an urban and a rural community. J. Hygiene 70 (1972) 99–104.Google Scholar
  20. 20.
    Hawkey, P. M. Resistant bacteria in the normal human flora. J. Antimicrob. Chemother. 18 (Suppl. C) (1986) 133–139.Google Scholar
  21. 21.
    Degener, J. E., Michel, M. F., Valkenburg, H. A., Smit, A. C., Muller, L., Thonus, I. P. Bacterial drug resistance in the community and in hospitals. Neth. J. Med. 28 (1985) 182–191.Google Scholar
  22. 22.
    Lester, S. C., Pla del Pilar, M., Wang, F., Perez Schael, I., Jiang, H., O'Brien, T. F. The carriage ofEscherichia coli resistant to antimicrobial agents by healthy children in Boston, in Caracas, Venezuela, and in Qin Pu, China. N. Engl. J. Med. 323 (1990) 285–289.Google Scholar
  23. 23.
    London, N., Nijsten, R., van den Bogaard, A., Stobberingh, E. Antibiotic resistance of faecalEnterobacteriaceae isolated from healthy volunteers, a 15-week follow-up study. J. Antimicrob. Chemother. 32 (1993) 83–91.Google Scholar
  24. 24.
    van Klingeren, B., Mouton, R. P. Standaardisatie van gevoeligheids-bepalingen. Verslag van de werkgroep richtlijnen gevoeligheidsbepalingen. Rijksinstituut voor Volksgezondheid en Milieuhygiene, Bilthoven, The Netherlands 1990.Google Scholar
  25. 25.
    Hunter, J., Shelley, J. C., Walton, J. R., Hart, C. A., Bennett, M. Apramycin resistance plasmids inEscherichia coli: possible transfer toSalmonella typhimurium in calves. Epidemiol. Infect. 108 (1992) 271–278.Google Scholar
  26. 26.
    Sambrook, J., Fritsch, E. F., Maniatis, T. Molecular cloning: a laboratory manual. 2nd edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1989.Google Scholar
  27. 27.
    Sundström, L., Rådström, P., Swedberg, G., Sköld, O. Site-specific recombination promotes linkage between trimethoprim and sulfonamide resistance genes. Sequence characterization ofdhfrV andsulI and a recombination active locus of Tn21. Mol. Gen. Genet. 213 (1988) 191–201.Google Scholar
  28. 28.
    Sundström, L., Sköld, O. ThedhfrI trimethoprim resistance gene of Tn7 can be found at specific sites in other genetic surroundings. Antimicrob. Agents Chemother. 34 (1990) 642–650.Google Scholar
  29. 29.
    Levy, S. B., Marshall, B., Schluederberg, S., Rowse, D., Davis, J. High frequency of antimicrobial resistance in human fecal flora. Antimicrob. Agents Chemother. 32 (1988) 1801–1806.Google Scholar
  30. 30.
    Cohen, S. P., McMurry, L. M., Hooper, D. C., Wolfson, J. S., Levy, S. B. Cross-resistance to fluoroquinolones in multiple antibiotic-resistant (Mar)Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition toOmpF reduction. Antimicrob. Agents Chemother. 33 (1989) 1318–1325.Google Scholar
  31. 31.
    Hächler, H., Cohen, S. P., Levy, S. B. marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance inEscherichia coli. J. Bacteriol. 173 (1991) 5532–5538.Google Scholar
  32. 32.
    Chaslus-Dancla, E., Glupczynski, Y., Gerbaud, G., Lagorce, M., Lafont, J. P., Courvalin, P. Detection of apramycin resistantEnterobacteriaceae in hospital isolates. FEMS Microbiol. Lett. 61 (1989) 261–266.Google Scholar
  33. 33.
    Chaslus-Dancla, E., Pohl, P., Meurisse, M., Marin, M., Lafont, J. P. High genetic homology between plasmids of human and animal origins conferring resistance to the aminoglycosides gentamicin and apramycin. Antimicrob. Agents Chemother. 35 (1991) 590–593.Google Scholar
  34. 34.
    Singh, K. V., Reves, R. R., Pickering, L. K., Murray, B. E. Identification by DNA sequence analysis of a new plasmid-encoded trimethoprim resistance gene in fecalEscherichia coli isolates from children in day-care centers. Antimicrob. Agents Chemother. 36 (1992) 1720–1726.Google Scholar
  35. 35.
    Møller, J. K. A microcomputer assisted analysis of drug resistance in bacteria. Comput. Methods Programs Biomed. 23 (1986) 217–223.Google Scholar

Copyright information

© MMV Medizin Verlag GmbH München 1994

Authors and Affiliations

  • Nancy London
    • 1
  • R. Nijsten
    • 1
  • A. v. d. Bogaard
    • 1
  • E. Stobberingh
    • 1
  1. 1.Dept. of Medical MicrobiologyUniversity of LimburgMaastrichtThe Netherlands

Personalised recommendations