Intensive Care Medicine

, Volume 22, Issue 3, pp 213–219 | Cite as

Renal effects of low-dose dopamine in patients with sepsis syndrome or septic shock treated with catecholamines

  • T. Lherm
  • G. Troché
  • M. Rossignol
  • P. Bordes
  • J. F. Zazzo



To evaluate the renal effects of low-dose dopamine in patients with sepsis syndrome or septic shock treated with catecholamines.


Prospective, clinical study using sequential periods.


A 12-bed surgical intensive care unit in a university hospital.


14 patients with sepsis syndrome and 15 patients with septic shock treated with exogenous catecholamines were studied. They had no diuretic treatment.


Two periods of 2 h each with and without 2μg·kg−1·min−1 of dopamine infusion. Hemodynamic and renal data were obtained at the end of each period. Measurements were repeated after 48 h of dopamine infusion in patients with sepsis syndrome. All data were evaluated by the Wilcoxon rank test.

Measurements and results

In patients with sepsis syndrome, diuresis and creatinine clearance increased significantly by 100% and 60%, respectively, during low-dose dopamine infusion without any change in systemic hemodynamics. The renal response to dopamine decreased significantly after 48 h of dopamine infusion (P<0.01). In patients with septic shock treated with catecholamines, no variation of either systemic hemodynamics or renal function was noted during low-dose dopamine infusion.


The renal effects of low-dose dopamine in patients with sepsis syndrome decrease with time. No renal effect of low-dose dopamine was observed in patients with septic shock treated with catecholamines. These findings suggest a desensitization of renal dopaminergic receptors.

Key words

Low dose dopamine Catecholamines Sepsis syndrome Septic shock Renal function Dopaminergic receptors Desensitization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hebert PC, Drummond AJ, Singezr J, Bernard GR, Russell JA (1993) A simple multiple system organ failure scoring system predicts mortality of patients who have sepsis syndrome. Chest 104: 230–235Google Scholar
  2. 2.
    Lowell JA, Schifferdecker C, Driscoll DF, Benotti PN, Bistrian BR (1990) Postoperative fluid overload: not a benign problem. Crit Care Med 18: 728–733Google Scholar
  3. 3.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) Prognosis in acute organ system failure. Ann Surg 202: 685–693Google Scholar
  4. 4.
    Regnier B, Rapin M, Gory G, Lemaire F, Teisseire B, Harari A (1977) Haemodynamic effects of dopamine in septic shock. Intensive Care Med 3: 47–53Google Scholar
  5. 5.
    Duke GJ, Bersten AD (1992) Dopamine and renal salvage in the critically ill patient. Anaesth Intensive Care 20: 277–302Google Scholar
  6. 6.
    Goldberg LI, McDonald RH, Zimmerman AM (1983) Sodium diuresis produced by dopamine in patients with congestive heart failure. N Engl J Med 14: 1060–164Google Scholar
  7. 7.
    McDonald RH, Goldberg LI, McNay JL, Tuttle EP (1964) Effects of dopamine in man: augmentation of sodium excretion, glomerular filtration rate and renal plasma flow. J Clin Invest 43: 1116–1124Google Scholar
  8. 8.
    D'Orio V, El Allaf D, Juchmes J, Marcelle R (1984) The use of low doses of dopamine in intensive care medicine. Arch Int Physiol Biochim 2: 511–520Google Scholar
  9. 9.
    Parker S, Carlon G, Isaacs M, Howland WS, Kahn RC (1981) Dopamine administration in oliguria and oliguric renal failure. Crit Care Med 9: 630–632Google Scholar
  10. 10.
    Szerlip HM (1991) Renal dose dopmine:fact and fiction. Ann Intern Med 115: 153–154Google Scholar
  11. 11.
    Schaer GL, Fink MP, Parillo JE (1985) Norepinephrine alone versus norepinephrine plus low-dose dopamine: enhanced renal blood flow with combination pressor therapy. Crit Care Med 13: 492–496Google Scholar
  12. 12.
    Fink MP, Nelson R, Roethel R (1985) Low-dose dopamine preserves renal blood flow in endotoxin shocked dogs treated with ibuprofeh. J Surg Res 38: 582–591Google Scholar
  13. 13.
    Orme ML, Breckenridge A, Dollery CT (1973) The effects of long term administration of dopamine on renal function in hypertensive patients. Eur J Clin Pharmacol 6: 150–155Google Scholar
  14. 14.
    Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Comittee. Chest 101: 1644–1655Google Scholar
  15. 15.
    Lindner A (1983) Synergism of dopamine and furosemide in diuretic-resistant oliguric acute renal failure. Nephron 33: 121–126Google Scholar
  16. 16.
    Le Gall JR and the French multicenter group of ICU research (1989) Factors related to outcome in intensive care: French multicenter study. Crit Care Med 17: 305–308Google Scholar
  17. 17.
    Elebute EA, Stoner HB (1983) The grading of sepsis. Br J Surg 70: 29–32Google Scholar
  18. 18.
    Le Corre P, Malledant Y, Tanguy M, Le Verge R (1993) Steady state pharmacokinetics of dopamine in adult patients. Crit Care Med 21: 1652–1657Google Scholar
  19. 19.
    Wilson RF, Soullier G (1980) The validity of two-hour creatinine clearance studies in critically ill patients. Crit Care Med 8: 281–283Google Scholar
  20. 20.
    Sladen RN, Endo E, Harrison T (1987) Two-hour versus 22 h creatinine clearance in critically ill patients. Anesthesiology 67: 1013–1016Google Scholar
  21. 21.
    Schwartz D, Lazar P, Papoz L (1985) Statistiques médicales et biologiques. In: Schwartz D (ed) Flammarion pp 95 117, pp 277–284Google Scholar
  22. 22.
    Martin C, Eon B, Saux P, Aknin P, Gouin F (1990) Renal effects of norepinephrine used to treat septic shock patients. Crit Care Med 18: 282–285Google Scholar
  23. 23.
    Martin C, Papazian L, Perrin G, Saux P, Gouin F (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103: 1826–1831Google Scholar
  24. 24.
    Flancbaum L, Choban PS, Dasta JF (1994) Quatitative effects of low dose dopamine on urine output in oliguric surgical intensive care unit patients. Crit Care Med 22: 61–66Google Scholar
  25. 25.
    Tamaki T, Hura CE, Kunau RT (1989) Dopamine stimulates cAMP production in canine afferent arterioles via DA1 receptors. Am J Physiol 256: 626–629Google Scholar
  26. 26.
    Seri I, Kone BC, Gullans SR et al. (1988) Locally formed dopamine inhibits Na+-K+-ATPase activity in rat cartical tubule cells. Am J Physiol 255: F666–673Google Scholar
  27. 27.
    Felder RA, Blecher M, Calcagno PL, et al (1984) Dopamine receptors in the proximal tubule of the rabbit. Am J Physiol 247: 499–505Google Scholar
  28. 28.
    Waelbroek M, Taton G, Delhaye M, Chatelain P, Camus JC, Pochet R, Leclerc JL, Desmet JM, Robberecht P, Christophe J (1983) The human heart beta-adrenergic receptors: coupling of beta 2-adrenergic receptors with the adenylate cyclase system. Mol Pharmacol 24: 174–182Google Scholar
  29. 29.
    Bristow MR, Ginsburg R, Minobe W, Cubiccioti RS, Scott Sageman W, Keith Lurie MS, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and betaadrenergic receptor density in failing human hearts. N Engl J Med 307: 205–211Google Scholar
  30. 30.
    Tashkin DP, Conolly ME, Deutsch RI, Hui KK, Littner M, Scarpace P, Abrass I (1982) Subsensitization of betaadrenoceptors in airways and lymphocytes of healthy and asthmatic subjects. Am Rev Respir Dis 125: 185–193Google Scholar
  31. 31.
    Bristow MR, Laser JA, Minobe W, Ginsburg R, Fowler MB, Rasmussen R (1984) Selective down-regulation of beta 1 adrenergic receptors in the failing human heart. Circulation 70: 61–67Google Scholar
  32. 32.
    Strigle TR, Petrinec D (1990) The effect of renal range dopamine and norepinephrine infusions on the renal vasculature. Am Surg 56: 494–496Google Scholar
  33. 33.
    Sibley DR, Lefkowitz RJ (1985) Molecular mechanism of receptor desensitization using beta adrenergic receptor coupled adenylate cyclase system as a model. Nature 317: 124–129Google Scholar
  34. 34.
    Schwinn DA (1993) Adrenoceptors as model for G protein-coupled receptors: structure, function and regulation. Br J Anaesth 71: 77–85Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • T. Lherm
    • 1
  • G. Troché
    • 1
  • M. Rossignol
    • 1
  • P. Bordes
    • 2
  • J. F. Zazzo
    • 1
  1. 1.Departement d'Anesthésie-Réanimation, Hopital Antoine BéclèreUniversité Paris-SudClamart CedexFrance
  2. 2.Département de Biochimie Hôpital Antoine BéclèreUniversité Paris-SudClamart CedexFrance

Personalised recommendations