Trigonometric system in Lp, 0<p<1

  • V. I. Ivanov
  • V. A. Yudin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. N. Bernshtein, Extremal Properties of Polynomials [in Russian], ONTI, Moscow-Leningrad (1937), pp. 28–31.Google Scholar
  2. 2.
    L. V. Taikov, “Some extremal problems for trigonometric polynomials,” Usp. Mat. Nauk,20, No. 3, 205–211 (1965).Google Scholar
  3. 3.
    A. A. Talalyan, “Representation of functions of classes Lp[0, 1], 0<p<1, by orthogonal series,” Acta Math. Acad. Sci. Hungary,21, Nos. 1–2, 1–9 (1970).Google Scholar
  4. 4.
    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press (1971).Google Scholar
  5. 5.
    G. H. Hardy and J. E. Littlewood, “Some new properties of Fourier constants,” Math. Ann.,97, 195–209 (1926).Google Scholar
  6. 6.
    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Gostekhizdat, Moscow-Leningrad (1950).Google Scholar
  7. 7.
    É. A. Storozhenko, P. Osval'd, and V. G. Krotov, “Direct and inverse theorems of Jackson type in the spaces Lp, 0<p<1,” Mat. Sb.,98, No. 3, 395–415 (1975).Google Scholar
  8. 8.
    V. I. Ivanov, “Direct and inverse theorems of the theory of approximation in the Lp metric for 0<p<1,” Mat. Zametki,16, No. 5, 641–658 (1975).Google Scholar
  9. 9.
    V. I. Ivanov, “Some inequalities for trigonometric polynomials and their derivatives in various metrics,” Mat. Zametki,18, No. 4, 489–498 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. I. Ivanov
    • 1
    • 2
  • V. A. Yudin
    • 1
    • 2
  1. 1.Tula Polytechnic InstituteUSSR
  2. 2.Moscow Power InstituteUSSR

Personalised recommendations