Mathematical systems theory

, Volume 6, Issue 1–2, pp 164–192 | Cite as

Uniform tag sequences

  • Alan Cobham
Article

Abstract

Structural properties, local and asymptotic, of members of a class of simple, realtime generable sequences are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. R. Büchi, Weak second-order arithmetic and finite automata,Z. Math. Logik Grundlagen Math. 6 (1960), 66–92.Google Scholar
  2. [2]
    R. Bumby andE. Ellentuck, Finitely additive measures and the first digit problem,Fund. Math. 65 (1969), 33–42.Google Scholar
  3. [3]
    A. Cobham, “On the Hartmanis-Stearns problem for a class of tag machines”, IEEE Conference Record of the 1968 Ninth Annual Symposium on Switching and Automata Theory, Schenectady (1968), 51–60.Google Scholar
  4. [4]
    A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata,Math. Systems Theory 3 (1969), 186–192.Google Scholar
  5. [5]
    B. D. Craven, On digital distribution in some integer sequences,J. Austral. Math. Soc. 5 (1965), 325–330.Google Scholar
  6. [6]
    C. C. Elgot, Decision problems of finite automata design and related arithmetics,Trans. Amer. Math. Soc. 98 (1961), 21–51.Google Scholar
  7. [7]
    P. C. Fischer, A. R. Meyer andA. L. Rosenberg, Time-restricted sequence generation,J. Comput. System Sci. 4 (1970), 50–73.Google Scholar
  8. [8]
    B. J. Flehinger, On the probability that a random integer has initial digit A,Amer. Math. Monthly 73 (1966), 1056–1061.Google Scholar
  9. [9]
    F. R. Gantmacher,The Theory of Matrices (2 vols.), Chelsea, New York, 1960.Google Scholar
  10. [10]
    S. Ginsburg,The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.Google Scholar
  11. [11]
    W. H. Gottschalk andG. A. Hedlund,Topological Dynamics, Amer. Math. Soc., Providence, R.I., 1955.Google Scholar
  12. [12]
    H. Halberstam andK. F. Roth,Sequences, Vol. I, Oxford Univ. Press, Oxford, 1966.Google Scholar
  13. [13]
    G. H. Hardy andE. M. Wright,An Introduction to the Theory of Numbers, fourth edition, Oxford Univ. Press, Oxford, 1965.Google Scholar
  14. [14]
    J. Hartmanis andH. Shank, On the recognition of primes by automata,J. Assoc. Comput. Mach. 15 (1968), 328–389.Google Scholar
  15. [15]
    J. Hartmanis andR. E. Stearns, On the computational complexity of algorithms,Trans. Amer. Math. Soc. 117 (1965), 285–306.Google Scholar
  16. [16]
    G. A. Hedlund, Remarks on the work of Axel Thue on sequences,Nordisk Mat. Tidskr. 15 (1967), 148–150.Google Scholar
  17. [17]
    G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,Math. Systems Theory 3 (1969), 320–375.Google Scholar
  18. [18]
    L. Hellerman, W. L. Duda andS. Winograd, Continuity and realizability of sequence transformations,IEEE Trans. Electronic Computers EC-15 (1966), 560–569.Google Scholar
  19. [19]
    M. Keane, Generalized Morse sequences,Z. Wahrscheinlichkeitstheorie Verw. Gebiete 10 (1968), 335–353.Google Scholar
  20. [20]
    W. J. LeVeque,Topics in Number Theory (2 vols.), Addison-Wesley, Reading, Mass., 1956.Google Scholar
  21. [21]
    M. L. Minsky,Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, N.J., 1967.Google Scholar
  22. [22]
    M. Minsky andS. Papert, Unrecognizable sets of numbers,J. Assoc. Comput. Mach. 13 (1966), 281–286.Google Scholar
  23. [23]
    D. J. Newman, On the number of binary digits in a multiple of three,Proc. Amer. Math. Soc. 21 (1969), 719–721.Google Scholar
  24. [24]
    M. O. Rabin andD. Scott, Finite automata and their decision problems,IBM J. Res. Develop. 3 (1959), 114–125.Google Scholar
  25. [25]
    G. N. Raney, Sequential functions,J. Assoc. Comput. Mach. 5 (1958), 177–180.Google Scholar
  26. [26]
    R. W. Ritchie, Finite automata and the set of squares,J. Assoc. Comput. Mach. 10 (1963), 528–531.Google Scholar
  27. [27]
    H. S. Shank, Records of Turing machines,Math. Systems Theory 5 (1971), 50–55.Google Scholar
  28. [28]
    J. V. Uspensky andM. A. Heaslet,Elementary Number Theory, McGraw-Hill, New York, 1939.Google Scholar
  29. [29]
    H. Yamada, Real-time computation and recursive functions not real-time computable,IRE Trans. Electronic Computers EC-11 (1962), 753–760.Google Scholar

Copyright information

© Swets & Zeitlinger B.V. 1972

Authors and Affiliations

  • Alan Cobham
    • 1
  1. 1.IBM Watson ResearchYorktown HeightsUSA

Personalised recommendations