Advertisement

Mathematical systems theory

, Volume 1, Issue 2, pp 89–111 | Cite as

A proof of the independence of the continuum hypothesis

  • Dana Scott
Article

Keywords

Computational Mathematic Continuum Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cohen, Paul J., The independence of the continuum hypothesis, I, II.Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1143–1148;ibid. 51 (1964), 105–110.Google Scholar
  2. [2]
    -, Independence results in set theory.The Theory of Models, Proc. 1963 Internat. Symposium, Berkeley, Amsterdam, 1965, pp. 39–54.Google Scholar
  3. [3]
    -, Set theory and the continuum hypothesis. New York (1966).Google Scholar
  4. [4]
    Easton, William B.,Powers of regular cardinals. Ph.D Thesis, Princeton, 1964.Google Scholar
  5. [5]
    Halmos, Paul R.,Lectures on Boolean algebras. Van Nostrand Mathematical Studies, Princeton, 1963.Google Scholar
  6. [6]
    Rasiowa, Helena andRoman Sikorski,The mathematics of metamathematics. Monografie Matematyczne, Vol. 41, Warsaw, 1963.Google Scholar
  7. [7]
    Sacks, Gerald E., Measure-theoretic uniformity.Bull. Amer. Math. Soc. 73 (1967), 169–174.Google Scholar
  8. [8]
    Scott, Dana andRobert Solovay, Boolean algebras and forcing, (in preparation).Google Scholar
  9. [9]
    Solovay, Robert, The measure problem. Abstract 65T-62,Notices Amer. Math. Soc. 12 (1965), 217.Google Scholar
  10. [10]
    Vopenka, Petr, The limits of sheaves and applications on constructions of models.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 189–192.Google Scholar
  11. [11]
    —, On ∇-model of set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 267–272.Google Scholar
  12. [12]
    Jech, T. andA. Sochor, On Θ-model of the set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 297–303.Google Scholar
  13. [13]
    Marek, W., A remark on independence proofs.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 543–545.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1967

Authors and Affiliations

  • Dana Scott
    • 1
  1. 1.Stanford UniversityUSA

Personalised recommendations