Mathematical systems theory

, Volume 1, Issue 2, pp 89–111 | Cite as

A proof of the independence of the continuum hypothesis

  • Dana Scott
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cohen, Paul J., The independence of the continuum hypothesis, I, II.Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1143–1148;ibid. 51 (1964), 105–110.Google Scholar
  2. [2]
    -, Independence results in set theory.The Theory of Models, Proc. 1963 Internat. Symposium, Berkeley, Amsterdam, 1965, pp. 39–54.Google Scholar
  3. [3]
    -, Set theory and the continuum hypothesis. New York (1966).Google Scholar
  4. [4]
    Easton, William B.,Powers of regular cardinals. Ph.D Thesis, Princeton, 1964.Google Scholar
  5. [5]
    Halmos, Paul R.,Lectures on Boolean algebras. Van Nostrand Mathematical Studies, Princeton, 1963.Google Scholar
  6. [6]
    Rasiowa, Helena andRoman Sikorski,The mathematics of metamathematics. Monografie Matematyczne, Vol. 41, Warsaw, 1963.Google Scholar
  7. [7]
    Sacks, Gerald E., Measure-theoretic uniformity.Bull. Amer. Math. Soc. 73 (1967), 169–174.Google Scholar
  8. [8]
    Scott, Dana andRobert Solovay, Boolean algebras and forcing, (in preparation).Google Scholar
  9. [9]
    Solovay, Robert, The measure problem. Abstract 65T-62,Notices Amer. Math. Soc. 12 (1965), 217.Google Scholar
  10. [10]
    Vopenka, Petr, The limits of sheaves and applications on constructions of models.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 189–192.Google Scholar
  11. [11]
    —, On ∇-model of set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 267–272.Google Scholar
  12. [12]
    Jech, T. andA. Sochor, On Θ-model of the set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 297–303.Google Scholar
  13. [13]
    Marek, W., A remark on independence proofs.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 543–545.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1967

Authors and Affiliations

  • Dana Scott
    • 1
  1. 1.Stanford UniversityUSA

Personalised recommendations