Infection

, Volume 20, Issue 1, pp 25–29

Effect of subinhibitory concentrations of antibiotics on extracellular shiga-like toxin I

  • J. N. Walterspiel
  • Ardythe L. Morrow
  • T. G. Cleary
  • S. Ashkenazi
Originalia

Summary

Patients with diarrhea due to strains of enterohemorrhagicEscherichia coli (EHEC) (e. g. O157:H7) might be at a higher risk of developing hemolytic uremic syndrome when treated with antimicrobial agents. It has been suggested that this might be due to an increase of release or production of vero or shiga-like toxin from such organisms, possibly as a stress response to antimicrobial agents. The aim of this study was to detect such increases in extracellular toxinin vitro with a newly developed method that exposed EHEC to high sublethal concentrations followed by a recovery phase at progressively lower concentrations. Five strains of EHEC were exposed to continuously changing concentrations of ciprofloxacin, co-trimoxazole, cefixime and tetracycline. The amount of free shiga-like toxin I (SLT-I) released was compared to the amount released from inocula that were not exposed to antibiotics. There were significant differences between the five EHEC strains in the amount of toxin detected after exposure to antimicrobial agents (p<0.001). Equally important was the type of antibiotic (p<0.001), with ciprofloxacin inducing the largest increase ranging from 169 to 436%, followed by co-trimoxazole, cefixime and tetracycline. In addition, the increases in free toxin correlated with the concentration of the antibiotics (p<0.001). The association between antibiotic-induced increases in SLT-I produced by strains of EHEC and certain classes of antibiotics might influence the analysis of future epidemiological studies on risk factors for HUS.

Wirkung von Antibiotika in subinhibitorischen Konzentrationen auf extrazelluläres Shiga-like-Toxin

Zusammenfassung

Die orale antimikrobielle Behandlung von Patienten mit Durchfällen, die durch enterohämorrhagische Stäme vonEscherichia coli (EHEC), zum Beispiel O157:H7, verursacht werden, ist ein möglicher Risikofaktor für die Entwicklung eines hämalytisch-urämischen Syndroms. Es wird vermutet, daß der Grund hierfür in einer gesteigerten Produktion oder Sekretion von Vero- oder Shiga-like-Toxinen liegt, als Teil einer durch die Antibiotika hervorgerufenen Streßreaktion der Bakterien. Das Ziel dieserIn-vitro-Studie war es, Erhöhungen von extrazellulären Toxinkonzentrationen zu messen nachdem EHEC mit einer Diffusionsmethode wechselnden Konzentrationen von Antibiotika ausgesetzt worden waren. Die Antibiotikakonzentrationen wurden mit der jeweils höchstmöglichen subletalen Konzentration begonnen, die dann stetig abnahm und den Bakterien eine Erholungsphase gestattete. Fünf EHEC- Stämme wurden auf diese Weise Ciprofloxacin, Co-trimoxazol, Cefixim und Tetracyclin ausgesetzt. Zwischen den verschiedenen Stämmen und Antibiotika fanden sich signifikante Unterschiede in den durch die Antibiotika hervorgerufenen Erhöhungen extrazellulärer Toxinkonzentrationen mit p<0,001 für beide Parameter. Ciprofloxacin verursachte die größten Steigerungen von 169 bis 436%, gefolgt von Co-trimoxazol, Cefixim und Tetracyclin. Diese Assoziation von erhöhten Konzentrationen von Vero- und Shiga-like-Toxinen und der Einwirkung von Antibiotika auf verschiedene Keime muß in Zukunft in Studien über die Risikofaktoren, die zur Entwicklung des hämolytischurämischen Syndroms beitragen, berücksichtigt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karmali, M. A., Petric, M., Lim, C., Fleming, P. C., Arbus, G. S., Lior, H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin producingEscherichia coli. J. Infect. Dis 151 (1985) 775–782.Google Scholar
  2. 2.
    Koster, F., Levin, J., Walker, L. Hemolytic uremic syndrome after shigellosis: relation to endotoxemia and circulating immune complexes. N. Engl. J. Med. 298 (1978) 927–933.Google Scholar
  3. 3.
    Lopez, E. L., Diaz, M., Grinstein, S., Devoto, S., Mendilaharzu, F., Murray, B. E., Ashkenazi, S., Rubeglio, E., Woloj, M., Vasquez, M., Turco, M., Pickering, L. K., Cleary, T. G. Hemolytic uremic syndrome and diarrhea in Argentine children: the role of shiga-like toxins. J. Infect. Dis. 160 (1989) 469–475.Google Scholar
  4. 4.
    Butler, T., Islam, M. R., Azad, M. A. K., Jones, P. K. Risk factors for development of hemolytic uremic syndrome during shigellosis. J. Pediatr. 110 (1987) 894–897.Google Scholar
  5. 5.
    Carter, A. O., Borczyk, A. A., Carlson, J. A. K., Harvey, B., Hockin, J. C., Karmali, M. A., Krishnan, C., Korn, D. A., Lior, H. A severe outbreak ofEscherichia coli O157:H7-associated hemorrhagic colitis in a nursing home. N. Engl. J. Med. 317 (1987) 1496–1500.Google Scholar
  6. 6.
    Pavia, A. T., Nichols, C. R., Green, D. P., Tauxe, R. V., Mottice, S., Green, K. D., Wells, J. G., Siegler, R. L., Brewer, E. D., Hannon, D., Blake, P. A. Hemolytic-uremic syndrome during an outbreak ofEscherichia coli O157:H7 infections in institutions for mentally retarded persons: clinical and epidemiologic observations. J. Pediatr. 116 (1989) 544–551.Google Scholar
  7. 7.
    Cimolai, N., Carter, J. E., Morrison, B. J., Anderson, J. D. Risk factors for the progression ofEscherichia coli O157:H7 enteritis to hemolytic-uremic syndrome. J. Pediatr. 116 (1988) 589–592.Google Scholar
  8. 8.
    Ostroff, S. M., Kobayashi, J. M., Lewis, J. H. Infections withEscherichia coli O157:H7 in Washington State: the first year of statewide disease surveillance. JAMA 262 (1989) 355–359.Google Scholar
  9. 9.
    Karch, H., Goroncy-Bermes, P., Opferkuch, W., Kroll, H. P., O'Brien, A. Subinhibitory concentrations of antibiotics modulate amount of shiga-like toxin produced byEscherichia coli. In:Adam, D., Hahn, H., Opferkuch, W. (eds.): The influence of antibiotics on the host-parasite relationship II. Springer-Verlag, Berlin 1985, pp. 239–245.Google Scholar
  10. 10.
    Karch, H., Strockbine, N. A., O'Brien, A. D. Growth ofEscherichia coli in the presence of trimethoprim-sulfamethoxazole facilitates detection of shiga-like toxin producing strains by colony blot assay. FEMS Microbiol. Lett. 141 (1986) 141–145.Google Scholar
  11. 11.
    Lorian, V., Gray, N. Increased bacterial density at the edge of antibiotic zones of inhibition. J. Bacteriol. 92 (1966) 1256–1257.Google Scholar
  12. 12.
    Newland, J. W., Neill, R. D. DNA probes for shiga-like toxins I and II and for toxin converting bacteriophages. J. Clin. Microbiol. 26 (1988) 1292–1297.Google Scholar
  13. 13.
    Ashkenazi, S., Cleary, T. G. Rapid method to detect shiga toxins and shiga-like toxin I based on binding to globotriosyl ceramide (Gb3), their natural receptor. J. Clin. Microbiol. 27 (1989) 1145–1150.Google Scholar
  14. 14.
    Gardner, A. D. Morphological effects of penicillin in bacteria. Nature 146 (1940) 837–838.Google Scholar
  15. 15.
    Greenwood, D., O'Grady, F. A comparison of the effects of ampicillin onEscherichia coli andProteus mirabilis. J. Med. Microbiol. 2 (1969) 435–441.Google Scholar
  16. 16.
    Zimmerman, S. B., Stapley, O. Relative morphological effects induced by cefoxitin and other β-lactam antibioticsin vitro. Antimicrob. Agents Chemother. 9 (1976) 318–326.Google Scholar
  17. 17.
    Lorian, V. Some effects of subinhibitory concentrations of penicillin on the structure and division of staphylococci. Antimicrob. Agents Chemother. 7 (1975) 864–870.Google Scholar
  18. 18.
    Lorian, V. Effect of antibiotics on bacterial structure. In:Root, R. K., Sande, M. A. (eds.): New dimensions in antimicrobial therapy. Churchill Livingstone, New York 1984, pp. 37–81.Google Scholar
  19. 19.
    Lorian, V., Atkinson, B. Abnormal forms of bacteria produced by antibiotics. Am. J. Clin. Pathol. 64 (1975) 678–688.Google Scholar
  20. 20.
    Lorian, V. Effect of low antibiotic concentration on bacteria: effects on ultrastructure, their virulence and susceptibility to immunodeficiencies. In:Lorian, V. (ed.): Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore 1985, pp. 596–668.Google Scholar
  21. 21.
    Morgan, C., Rosenkranz, H. S., Carr, H. S., Rose, H. M. Electron microscopy of chloramphenicol-treatedEscherichia coli. J. Bacteriol. 93 (1967) 1987.Google Scholar
  22. 22.
    Yoh, M., Yamamoto, K., Honda, T., Takeda, Y., Niwatani, T. Effects of lincomycin and tetracycline on production and properties of enterotoxins of enterotoxigenicEschericha coli. Infect. Immun. 42 (1983) 778–782.Google Scholar
  23. 23.
    Levner, M., Urbano, C., Rubin, B. A. Lincomycin increases synthetic rate and periplasmic pool size of cholera toxin. J. Bacteriol. 143 (1980) 441–447.Google Scholar
  24. 24.
    George, R. H., Johnson, M., Young, D., Burdon, D. W. Induction ofClostridium difficile toxin by antibiotics. Current chemotherapy and infectious disease. In:Nelson, J. D., Grassi, C. (eds.): Proceedings of the 11th International Congress of Chemotherapy and the 19th Interscience Conference on Antimicrobial Agents and Chemotherapy (Volume 2), Boston, October 1979. American Society for Microbiology, Washington D. C. 1980, pp. 955–956.Google Scholar
  25. 25.
    Jurgens, K. R., Baez, J. A. Use of fluoroquinolones improves productivity of a Rec A promoter regulated intracellular recombinant protein inE. coli. ASM Conference on Biotechnology, Chicago, June 7–10, 1990. American Society for Microbiology, Washington D. C. 1990, Abstract no. 24, p. 14, 1990.Google Scholar
  26. 26.
    Little, J. W., Mount, D. W. The SOS regulatory system ofEscherichia coli. Cell 29 (1982) 11–22.Google Scholar
  27. 27.
    Tzipori, S., Gibson, R., Montanaro, J. Nature and distribution of mucosal lesions associated with enteropathogenic and enterohemorrhagicEscherichia coli in piglets and the role of plasmid-mediated factors. Infect. Immun. 57 (1989) 1142–1150.Google Scholar
  28. 28.
    Sandberg, T., Stenquist, R., Svanborg Eden, C. Effects of subminimal inhibitory concentrations of ampicillin, chloramphenicol and nitrofurantion on the attachment ofEscherichia coli to human uroepithelial cellsin vitro. Rev. Infect. Dis. 1 (1979) 838–844.Google Scholar
  29. 29.
    Vosbeck, K., Handshin, H., Menge, E. B., Zak, O. Effects of subminimal inhibitory concentrations of antibiotics on adhesiveness ofEscherichia coli in vitro. Rev. Infect. Dis. 1 (1979) 845–851.Google Scholar

Copyright information

© MMV Medizin Verlag GmbH München 1992

Authors and Affiliations

  • J. N. Walterspiel
    • 1
  • Ardythe L. Morrow
    • 1
  • T. G. Cleary
    • 1
  • S. Ashkenazi
    • 2
  1. 1.Pediatric Infectious DiseasesUniversity of Texas Medical SchoolHoustonUSA
  2. 2.Dept. of PediatricsBeilinson Medical CenterPetah TikvaIsrael

Personalised recommendations