Intensive Care Medicine

, Volume 20, Issue 3, pp 181–186 | Cite as

Left ventricular function during weaning of patients with chronic obstructive pulmonary disease

  • Ch. Richard
  • J. -L. Teboul
  • F. Archambaud
  • J. -L. Hebert
  • P. Michaut
  • P. Auzepy



Determine the evolution of left ventricular ejection fraction during weaning.


Prospective study.


Intensive care unit of a university teaching hospital.

Patients and participants

12 consecutive mechanically ventilated patients, without documented coronary artery disease, suffering from acute exacerbation of chronic obstructive pulmonary disease and able to be weaned.

Measurements and results

Left ventricular ejection fraction was determined during mechanical ventilation, inspiratory pressure support (10 cmH2O) and spontaneous ventilation with constant inspiratory oxygen fraction using technetium99m radionuclide angiography. Spontaneous ventilation induced a significant decrease in left ventricular ejection fraction from 54.5±12.4 to 47.0±13% (p<0.01). Inspiratory pressure support induced a slight but non-significant decrease in left ventricular ejection fraction from 55.0±12.1 to 50.3±12.4%. Left ventricular ejection fraction was homogeneously reduced by spontaneous ventilation without patent regional wall motion abnormalities of the left ventricle. Myocardial201thallium imaging performed 15 min after weaning showed a normal perfusion in the left ventricle anterior and posterior free wall.


Weaning of patients suffering from chronic obstructive pulmonary disease without coronary artery disease induced a significant reduction in left ventricular ejection fraction. The non significant decrease in left ventricular ejection fraction observed with inspiratory pressure support suggested that our results might be explained by a weaning induced increase in afterload.

Key words

Left ventricular function Weaning Inspiratory pressure support Chronic obstructive pulmonary disease Coronary artery disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robotham JL, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology 74:172–183Google Scholar
  2. 2.
    Braunwald E (1988) Assessment of cardiac function. In: Braunwald E (ed) Heart disease, 3rd edn. Saunders, Philadelphia, pp 449–470Google Scholar
  3. 3.
    Lemaire F, Teboul JL, Cinotti L et al (1989) Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 6:171–179Google Scholar
  4. 4.
    Rasanen J, Heikkila J, Downs J, Nikki P, Vaisanen I, Viitanen A (1985) Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am J Cardiol 152:296–300Google Scholar
  5. 5.
    Grace MP, Greenbaum DM (1982) Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med 10:358–360Google Scholar
  6. 6.
    Pinsky MR, Matuschak GM, Klain M (1985) Determinants of cardiac augmentation by elevation in intrathoracic pressure. J Appl Physiol 58:1189–1198Google Scholar
  7. 7.
    Brochard L, Pluskwa F, Lemaire F (1987) Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis 136:411–415Google Scholar
  8. 8.
    Tobin MJ (1990) Weaning from mechanical ventilation. Crit Care Clin 6:725–747Google Scholar
  9. 9.
    Rozanski A, Bernan DS (1987) The efficacy of cardiovascular nuclear medicine exercise studies. Semin Nucl Med 17:104–120Google Scholar
  10. 10.
    Standke R, Hor G, Maul FD (1983) Fully automated sectorial equilibrium radionuclide ventriculography. Eur J Nucl Med 8:77–83Google Scholar
  11. 11.
    Franusco DA, Collins SM, Go RT, Ehrhardt JC, Van Kirk OC, Marcus ML (1982) Tomographic thallium201 myocardial perfusion scintigrams after maximal coronary artery vasodilatation with intravenous dipyridamole Circulation 66:370–378Google Scholar
  12. 12.
    Teboul JL, Richard Ch (1991) Acute left ventricular dysfunction during weaning from mechanical ventilation in: Vincent JL (ed) Update in intensive care and emergency medicine. Springer, Berlin, pp 297–305Google Scholar
  13. 13.
    Torres A, Reyes, A, Roca J, Wagner PD, Rodriguez-Roisin R (1989) Ventilation-perfusion mismatching in chronic obstructive pulmonary disease during ventilator weaning. Am Rev Respir Dis 140:1246–1250Google Scholar
  14. 14.
    Hurford WE, Lynch KE, Strauss HW, Lowenstein E, Zapol WM (1991) Myocardial perfusion as assessed by Thallium201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients. Anesthesiology 74:1007–1016Google Scholar
  15. 15.
    Cannon RO, Camici PG, Epstein SE (1992) Pathophysiological dilemma of syndrome X. Circulation 85:883–892Google Scholar
  16. 16.
    Pinsky MR (1989) The effects of changing ITP on the normal and failing heart. In: Scharf SM, Cassidy SS (eds) Heart lung interactions in health and disease. Dekker, New York, pp 839–870Google Scholar
  17. 17.
    Oswalt CE, Gates GA, Holstrom FMG (1977) Pulmonary oedema as a complication of acute airway obstruction. J Am Med Assoc 238:1833–1835Google Scholar
  18. 18.
    Sofer S, Bar-Ziv J, Scharf SM (1984) Pulmonary oedema following relief of upper airway obstruction. Chest 86:401–403Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Ch. Richard
    • 1
  • J. -L. Teboul
    • 1
  • F. Archambaud
    • 2
  • J. -L. Hebert
    • 3
  • P. Michaut
    • 1
  • P. Auzepy
    • 1
  1. 1.Service de Réanimation MédicaleHôpital de Bicêtre, Faculté de Médecine Paris-SudLe Kremlin-Bicêtre CedexFrance
  2. 2.Service de Médecine NucléaireHôpital de Bicêtre, Faculté de Médecine Paris-SudLe Kremlin-Bicêtre CedexFrance
  3. 3.Laboratoire d'Explorations FonctionellesHôpital de Bicêtre, Faculté de Médecine Paris-SudLe Kremlin-Bicêtre CedexFrance

Personalised recommendations