Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of antisense oligodeoxynucleotide hybridization on in vitro translation of potato virus Y RNA

  • 37 Accesses

  • 6 Citations

Abstract

Potato virus Y (PVY), a potyvirus, has an RNA genome containing 9704 nucleotides of which 185 belong to the 5′ nontranslated region (NTR). Contrary to most eukaryotic mRNAs that have a cap structure, the potyvirus RNA has a genome-linked protein (VPg). In order to understand the mechanisms of PVY RNA translation initiation, hybrid-arrest translation was used to localize sequences involved in binding of proteins and/or ribosomes. The 5′ NTR was fused to the β-glucuronidase (GUS) reporter gene. Six antisense oligodeoxynucleotides were used for hybridization, and the efficiency of the in vitro translation of the hybridized mRNA was modified to different levels depending upon the position of the oligodeoxynucleotide used. The highest inhibition was obtained with an oligodeoxynucleotide hybridized to the 5′ end. In addition, translation of GUS mRNA containing the PVY 5′ NTR was greatly enhanced when this mRNA was capped. These results differ from those obtained with the tobacco etch virus (TEV) and three picornaviruses, but are similar to those obtained with capped mRNA.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hari V., Virology112 391–399, 1981.

  2. 2.

    Hari V., Siegel A., Rozek D., and Timberlake W.E., Virology92 568–571, 1979.

  3. 3.

    Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G., Astier-Manifacier S., and Casse-Delbart F., J Gen Virol70 935–947, 1990.

  4. 4.

    Hiebert E., Purciful D.E., and Christie R.G., Methods Virol8 267, 1984.

  5. 5.

    Domier L.L., Shaw J.G., and Rhoads R.E., Virology158 20–27, 1987.

  6. 6.

    Franssen H., Leunissen J., Goldbach R., Lomonosoff G., and Zimmern D., EMBO J3 855–861, 1984.

  7. 7.

    Trono D., Andino R., and Baltimore, D., J Virol62 2291–2299, 1988.

  8. 8.

    Pelletier J. and Sonenberg N., Nature (London)334 320–325, 1988.

  9. 9.

    Pelletier J. and Sonenberg N., J Virol63 441–444, 1989.

  10. 10.

    Pelletier J., Kaplan G., Racaniello V.R., and Sonenberg N., Mol Cell Biol8 1103–1112, 1988.

  11. 11.

    Shih D.S., Park I., Evans C.L., Jaynes J.M., and Palmenberg A.C., J Virol61 2033–2037, 1987.

  12. 12.

    Sankar S., Cheah K.C., and Porter A.G., Eur J Biochem184 39–45, 1989.

  13. 13.

    Elroy-Stein O., Fuerst T.R., and Moss B., Proc Natl Acad Sci USA86 6126–6130, 1989.

  14. 14.

    Carrington J.C. and Freed D.D., J. Virol64 1590–1597, 1990.

  15. 15.

    Kozak M., J Cel Biol108 229–241, 1989.

  16. 16.

    Furuichi Y., La Fiandra A., and Shatkin A.J., Nature (London)266 235–239, 1977.

  17. 17.

    Rhoads R.E., TIBS13 52–56, 1988.

  18. 18.

    Riechmann J.L., Lain S., and Garcia J.A., J Gen Virol70 2785–2789, 1989.

  19. 19.

    Gubler U. and Hoffman B.J., Gene10 247–263, 1983.

  20. 20.

    Maniatis T., Fritsch E.F., and Sambrook J.,Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, 1988.

  21. 21.

    Jefferson R.A., Plant Mol Biol Reporter5 387–405, 1987.

  22. 22.

    Laemmli U.K., Nature (London)227 680–685, 1970.

  23. 23.

    Lutcke H.A., Chow K.C., Mickel F.S., Moss K.A., Kern H.F., and Scheele G.A., EMBO J6 43–48, 1987.

  24. 24.

    Coleman J., Hirashima A., Inokuchi Y., Greene P., and Inouye M., Nature (London)315 601–603, 1985.

  25. 25.

    Haeuptle M.T., Frank R., and Dobberstein B., Nucleic Acids Res14 1427–1448, 1986.

  26. 26.

    Melton D.A., Antisense RNA and DNA. Cur Commun Mol Biol 37, 1988.

  27. 27.

    Meerovitch K., Pelletier J., and Sonenberg N., Genes Develop3 1026–1034, 1989.

  28. 28.

    Del Angel R.M., Papavassiliou A.G., Fernandez-Tomas C., Silverstein S.J., and Racaniello V.R., Proc Natl Acad Sci USA86 8299–8303, 1989.

  29. 29.

    Jang S.K., Krâusslich H-G., Nickling M.H., Duke G.M., Palmenberg A.C., and Wimmer E., J Virol8 2636–2643, 1988.

  30. 30.

    Borovjagin A.V., Evstafieva A.G., Ugarova T.Y., and Shatsky I.N., FEBS Lett261 237–240, 1990.

  31. 31.

    Jang S.K. and Wimmer E., Genes Devel4 1560–1572, 1990.

  32. 32.

    Luz N., and Beck E., FEBS Lett269 311–314, 1990.

  33. 33.

    Melton D.A., Proc Natl Acad Sci USA82 144–148, 1985.

  34. 34.

    Kozak M., Mol Cell Biol9 5134–5142, 1989.

  35. 35.

    Gallie D.R., Sleat D.E., Watts J.W., Turner P.C., and Wilson T.M.A., Nucleic Acid Res16 883–893, 1988.

  36. 36.

    Green P.J., Pines O., and Inouye M., Ann Rev Biochem55 569–597, 1986.

  37. 37.

    Bertrand J.-R., Imbach J.-L., Paoletti C., and Malvy C., Biochem Biophys Res Commun164 311–318, 1989.

  38. 38.

    Pelletier J., Kaplan G., Racaniello V.R., and Sonenberg N., J Virol62 2219–2227, 1988.

  39. 39.

    Alsaadi S., Hassard S., and Stanway G., J Gen Virol70 2799–2804, 1989.

Download references

Author information

Correspondence to Caroline Levis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Levis, C., Tronchet, M., Meyer, M. et al. Effects of antisense oligodeoxynucleotide hybridization on in vitro translation of potato virus Y RNA. Virus Genes 6, 33–46 (1992). https://doi.org/10.1007/BF01703755

Download citation

Key words

  • potyvirus
  • antisense
  • in vitro translation
  • 5′ nontranslated region