Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The range of a vector measure with values in a montel space

  • 25 Accesses

  • 7 Citations

This is a preview of subscription content, log in to check access.

References

  1. [1]

    R. G. Bartle, N. Dunford andJ. Schwartz, Weak compactness and vector measures,Canadian J. Math. 7 (1955), 289–305.

  2. [2]

    D. Blackwell, The range of certain vector integrals,Proc. Amer. Math. Soc. 2, (1951), 390–395.

  3. [3]

    N. Bourbaki,Espaces Vectoriels Topologiques, Hermann, Paris, 1955.

  4. [4]

    C. Castaing, Sur une extension du théorème de Lyapounov,C. R. Acad. Sci. Paris 260 (1965), 3838–3841.

  5. [5]

    P. R. Halmos, The range of a vector measure,Bull. Amer. Math. Soc. 54 (1948), 412–421.

  6. [6]

    H. Hermes andJ. P. LaSalle,Functional Analysis and Time Optimal Control, Academic Press, New York, 1969.

  7. [7]

    H. G. Kellerer, Zur Konvexität des Wertebereiches normaler Masse,Arch. Math. 12 (1961), 301–306.

  8. [8]

    A. Liapounoff, On completely additive vector functions,Izv. Akad. Nauk SSSR 4 (1940), 465–478.

  9. [9]

    A. Liapounoff, On completely additive vector functions,Izv. Akad. Nauk SSSR 10 (1946) 277–279.

  10. [10]

    J. Lindenstrauss, A short proof of Liapounoff's convexity theorem,J. Math. Mech. 15 (1966), 971–972.

  11. [11]

    C. Olech, On the range of an unbounded vector-valued measure,Math. Systems Theory 2 (1968), 251–256.

  12. [12]

    L. Schwartz,Théorie des Distributions, 2nd ed., Hermann, Paris, 1966.

  13. [13]

    J. J. Uhl, Jr., The range of a vector-valued measure,Proc. Amer. Math Soc. 23 (1969), 158–163.

  14. [14]

    M. Valadier, Sur l'intégration d'ensembles convexes compacts en dimension infinie,C. R. Acad. Sci. Paris 266 (1968), 14–16.

  15. [15]

    R. Wegmann, Der Wertbereich von Vektorintegralen,Z. Wahrscheinlichkeitstheorie (to appear).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lew, J.S. The range of a vector measure with values in a montel space. Math. Systems Theory 5, 145–147 (1971). https://doi.org/10.1007/BF01702870

Download citation

Keywords

  • Computational Mathematic
  • Vector Measure
  • Montel Space