Intensive Care Medicine

, Volume 21, Issue 7, pp 577–583

Mechanisms of postoperative prolonged plasma volume expansion with low molecular weight hydroxethy starch (HES 200/0.62, 6%)

  • A. C. Degrémont
  • M. Ismaïl
  • M. Arthaud
  • B. Oulare
  • O. Mundler
  • M. Paris
  • J. F. Baron
Original

Abstract

Objective

To define the mechanisms of the stable and prolonged post-operative plasma volume expansion observed with Hydroxyethyl Starches (HES) and to determine whether a partial intravascular hydrolysis of large molecules contribute to reinforce the colloid-osmotic effect.

Design

Prospective, pharmacologic study using single dose of drug.

Setting

University-based, post-anesthesia care unit.

Patients

The protocol was performed during the post-operative period, in 10 patients after stable recovery from general anesthesia for carotid endarterectomy.

Interventions

HES 200/0.62 (500 ml) was infused over 30 min. Standard hemodynamic and biological variables, HES concentration and colloid osmotic pressure were obtained at each measurement. Plasma volume was calculated using51Cr-labelled RBCs. Patterns of changes in number average molecular weight (MWn) and weight average MW (MWw) were measured using gel permeation chromatography. Measurements were obtained at control, end of infusion, 1 h, 3 h, 6 h and 24 h after infusion.

Measurements and main results

Plasma volume increased by 693 ml (+21%) after the infusion of HES and remained constant over 24 h. HES concentration progressively decreased to reach a value of 35% of the peak at 24 h. MWn and MWw, initially decreased when compared with the dose solution and changed little in the 24 h study period. Diuresis significantly decreased at 3 h up to 24 h. Plasma albumin decreased after infusion and then progressively increased to reach a significantly higher value at 24 h than after infusion.

Conclusion

Initial plasma volume expansion and decrease in HES concentration agree with previously-published data. Maintenance of plasma volume expansion over 24 h was not related to a partial intravascular hydrolysis. Low elimination rate of HES, extravascular mobilization of albumin and post-operative renal adaptations were possibly the 3 main mechanisms to explain a prolonged plasma volume expansion with HES 200/0.62, 6%.

Key words

Plasma volume Hydroxyethyl-starch Pharmacokinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson WL (1980) Hydroxyethyl starch. Dev Biol Stand 44:259–266Google Scholar
  2. 2.
    Thompson WL, Britton JJ, Watton RP (1962) Persistence for starch derivative and dextran when infused after hermorrhage. J Pharmacol Exp 136:125–132Google Scholar
  3. 3.
    Lederer K, Huber C, Dunky M, Fink J, Ferber H, Nitsch E (1985) Studies on hydroxyethyl starch. Part I: Molecular characterization by size exclusion chromatography coupled with low angle laser light sattering. Arzneimittelforsch Drug Res 35:610–614Google Scholar
  4. 4.
    Rackow EC, Falk JL, Fein IA, Siegel JS, Packman MI, Haupt MT, Kaufman BS, Putman D (1983) Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11:839–851PubMedGoogle Scholar
  5. 5.
    Damon L, Adams M, Stricker RB, Ries C (1987) Intracranial bleeding during treatment with hydroxyethyl starch. N Engl J Med 317:964–965Google Scholar
  6. 6.
    Boon JC, Jesh F, Ring J, Messmer K (1976) Long term intravascular persistence of hydroxyethyl starch in man. Eur Surg Res 8:497–503PubMedGoogle Scholar
  7. 7.
    Iguchi K, Ikeda K (1971) Clinical investigations of a new plasma expander partially substituted HES. Med Consul N Rem 8:139–150Google Scholar
  8. 8.
    Kolher H, Zscheidrich H, Linfante A, Appel F, Pitz H, Clasen R (1982) The elimination of hydroxyethyl Starch 200/0.5, dextran 40 and oxypolygelatin. Klin Wochenschr 60:293–301PubMedGoogle Scholar
  9. 9.
    Mishler JM, Parry ES, Sutherland BA, Bushrod JR (1979) A clinical study of low molecular weight hydroxyethyl starch, a new plasma expander. Br J Clin Pharmacol 7:619–622PubMedGoogle Scholar
  10. 10.
    London MJ, Ho JS, Triedman JK, Verrier ED, Levin J, Merrick SH, Hanley FL, Browner WS, Mangano DT (1989) A randomized clinical trial of 10% pentastarch (low molecular weight hydroxyethyl starch) versus 5% albumin for plasma volume expansion after cardiac operations. J Thorac Cardiovasc Surg 97:785–797PubMedGoogle Scholar
  11. 11.
    Rosencher N, Vassilieff N, Guigonis V, Toulon P, Conseiller C (1992) Effects of Elohes and albumin on haemostasis in orthopaedic surgery. Ann Fr Anesth Réanim 11:526–530Google Scholar
  12. 12.
    Mishler J, Ricketts C, Parkhouse E (1979) Changes in the molecular compostion of circulating hydroxyethyl starch following consecutive daily infusions in man. Br J Clin Pharm 7: 505–509Google Scholar
  13. 13.
    Ferber HP, Nitsch E, Förster H (1985) Studies on hydroxyethyl starch. Part II: changes of the molecular weight distribution of hydroxyethyl starch types 450/0.7, 450/0.5, 450/0.3, 300/0.4, 200/0.7, 200/0.5, 200/0.3, 200/0.1 after infusion in urine and serum of volonteers. Arzneimittelforschung 35: 615–622PubMedGoogle Scholar
  14. 14.
    Quon CY (1988) Clinical pharmacokinetics and pharmacodynamics of colloidal plasma volume expanders. J Cardiothorac Anesth 2:13–23Google Scholar
  15. 15.
    Kalhorn F, Yacob A, Sum C (1984) Billilary excretion of hydroxyethyl starch in man. Biomedic Mass Spectrometry 11:164–166Google Scholar
  16. 16.
    Grootendorst AF, Van Wilgenburg MGM, De Laat PHJM, Van der Hoven B (1988) Albumin abuse in intensive care medicine. Intensive Care Med 14:554–557PubMedGoogle Scholar
  17. 17.
    International Committee for standardization in Haermatology (ICSH) (1973) Standard techniques for the measurement of red cell and plasma volume. Br J Haematol 25:795–814Google Scholar
  18. 18.
    Najean Y, Deschryuer F (1984) The body venous haematocrit ratio and its use for calculating total blood volume from fractional volumes. Em J Nucl Med 9:558–560Google Scholar
  19. 19.
    Metcalf W, Papadopoulos A, Tufaro R, Barth A (1970) A clinical physiologic study of hydroxyethyl starch. Surg Gynecol Obstet 131:255–267PubMedGoogle Scholar
  20. 20.
    Parving HH, Gyntelberg F (1973) Transcapillary escape rate of albumin and plasma volume in essential hypertension. Circ Res 32:643–651PubMedGoogle Scholar
  21. 21.
    Hoye RC, Bennet SH, Geelhoed GW et al (1972) Fluid volume and albumin kinetics occuring with major surgery. JAMA 222:1255–1261PubMedGoogle Scholar
  22. 22.
    Mizuta S, Keiichi I, Kiyoshi I (1971) Clinical investigation of HES in respect of circulatory movement, metabolism and excretion. Med Consul N Remed 8:2493–2497Google Scholar
  23. 23.
    Wiedler B, Von Bormann B, Sommermeyr K, Lohmann E, Peil J, Hempelmann G (1991) Pharmakokinetische Merkmale als Kriterien für den klinischen Einsatz von Hydroxyethylstärke. Arzneimittelforsch Drug Res 41:494–498Google Scholar
  24. 24.
    Hulse JD, Yacobi A (1983) Hetastarch: an over view of the colloid and its metabolism. Drug Intell Clin Pharmacol 17:334–341Google Scholar
  25. 25.
    Koehler H, Kirch W, Weihrauch TR, Prellwitz W, Horstmann HJ (1977) Macroamylasaemia after treatment with hydroxyethyl starch. Eur J Clin Invest 7:205–211PubMedGoogle Scholar
  26. 26.
    Willms CD, Davidson IJA, Almstrong JM, Kwom M, Risser R, Sandor ZF, Sentenentes JT (1991) Pentafraction-Du Pont versus albumin for resuscitation of a lethal intestinal ischemic shock in rats. Circ Shock 33:216–221PubMedGoogle Scholar
  27. 27.
    Lundsgaard-Hansen P (1986) Physiology and pathophysiology of colloid osmotic pressure and albumin metabolism. Curr Stud Hematol Blood Transf 53:1–17Google Scholar
  28. 28.
    Wood GA, Lewitt SH (1965) Simultaneous red cell mass and plasma volume determination using 51 Cr tagged red cells and 125-l labelled albumin. J Nucl Med 6:433–440Google Scholar
  29. 29.
    Ferrant A, Lewis SA, Szur L (1982) The elution of 99 m Tc from red cells and its effect on red cells volume measurement. J Clin Pathol 27:373–380Google Scholar
  30. 30.
    Baron JF, De Kegel D, Prost AC, Mundler O, Maistre G, Carayon A, Landault C, Barré E, Viars P (1991) Hemodynamic and hormonal effects of normovolemic hemodilution using hydroxyethyl starch. Clin Intensive Care 2:22–26Google Scholar
  31. 31.
    Baron JF, De Kegel D, Prost AC, Mundler O, Arthaud M, Basset G, Maistre G, Masson F, Carrayon A, Landault C, Barre E, Viars P (1991) Low molecular weight hydroxyethyl starch 6% compared to albumin 4% during intentional hemodilution. Intensive Carc Med 17:141–148Google Scholar
  32. 32.
    Mishler JM (1984) Synthetic plasma volume expanders: their pharmacology, safety and clinical efficacy. Clin Haematol 13:75–92PubMedGoogle Scholar
  33. 33.
    Rackow EC, Mecher C, Astiz ME, Griffel M, Falk JL, Weil H (1989) Effects of pentastarch and albumin infusion on cardiorespiratory function and coagulation in patients with severe sepsis and systemic hypoperfusion. Crit Care Med 17:396–398Google Scholar
  34. 34.
    Lijedahl SO, Rieger S (1967) Importance of thoracic duct lymph in restitution of plasma volume and plasma proteins after bleeding and immediate substitution in the splenectomized dog. Acta Chir Scand [Suppl] 379:39–51Google Scholar
  35. 35.
    Kohler H, Zchiedrich H, Clasen R, Linfante A, Gamm H (1982) Blutvolumen, kolloidaler osmotischer Druck und Nierenfunktion von Probanden nach Infusion mittelmolekularer 10% Hydroxyethylstärke 200/0.5 und 10% dextran 40. Anaesthesist 31:61–67PubMedGoogle Scholar
  36. 36.
    Rothschild MA, Oratz M, Schreiber SS (1979) Extravascular albumin. N Engl J Med 301:497–498PubMedGoogle Scholar
  37. 37.
    Rothschild MA, Oratz M, Schreiber SS (1972) Albumin synthesis. N Engl J Med 286:748–757PubMedGoogle Scholar
  38. 38.
    Krasna MJ, Scott GE, Scholz PM (1986) Postoperative enhancement of urinary output in patients with acute renal failure using continuous furosemide therapy. Chest 89:294–295PubMedGoogle Scholar
  39. 39.
    Hall JE (1986) Regulation of glomerular filtration rate and sodium excretion by angiotensin II. Fed Proc 45: 1431–1437PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. C. Degrémont
    • 1
  • M. Ismaïl
    • 2
  • M. Arthaud
    • 3
  • B. Oulare
    • 4
  • O. Mundler
    • 5
  • M. Paris
    • 4
  • J. F. Baron
    • 6
  1. 1.Départment d'Anesthésie-RéanimationHôpial TenonFrance
  2. 2.Départment d'Anesthésie-RéanimationHôpial Pitié-SalpétrièreParisFrance
  3. 3.Laboratoire des UrgencesHôpital Pitié-SalpétrièreParisFrance
  4. 4.Laboratoire Central de BiochimieHôpital BroussaisParisFrance
  5. 5.Laboratoire de Médecine NucléaireHôpital LariboisièreFrance
  6. 6.Départment d'Anesthésie-RéanimationHôpital BroussaisParisFrance

Personalised recommendations