Mathematical systems theory

, Volume 18, Issue 1, pp 295–328 | Cite as

An essay on continued fractions

Leonhard Euler
  • Myra F. Wyman
  • Bostwick F. Wyman


Computational Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. Burckhardt et al., editors,Leonhard Euler 1707–1783, Beiträge zur Leben und Werk. Basel: Birkhaüser, 1983.Google Scholar
  2. 2.
    Georg Faber, Übersicht über die Bände 14, 15, 16, 16* der ersten Serie, pp. VII-CXII in O.O.I.16, part 2, Basel: Teubner, 1935.Google Scholar
  3. 3.
    P. Fuhrmann, A matrix Euclidean algorithm and matrix continued fraction expansions.Systems and Control Letters, 3 (1983), 263–271.Google Scholar
  4. 4.
    W. B. Gragg and A. Lindquist, On the partial realization problem,Linear Algebra and Its Applications, 50, April 1983, pp. 277–319.Google Scholar
  5. 5.
    E. L. Ince,Ordinary Differential Equations, Orig. Ed. 1926. Dover Reprint, New York, 1956. (Sec. 7.5, pp. 178 ff.)Google Scholar
  6. 6.
    William B. Jones, W. J. Thron,Continued Fractions — Analytic Theory and Applications, Reading: Addison-Wesley, 1980.Google Scholar
  7. 7.
    R. E. Kalman, On partial realizations, transfer functions, and canonical forms,Acta Polytechnica Scandinavica, MA 31, Helsinki, 1979, 9–32.Google Scholar
  8. 8.
    O. Perron,Die Lehre von den Kettenbrüchen, (second edition). Leipzig: Teubner, 1919. Reprint, New York: Chelsea, 1950.Google Scholar
  9. 9.
    Mathematics Magazine, A Tribute to Leonhard Euler, 56, No. 5, Nov. 1983.Google Scholar
  10. 10.
    M. A. Shayman, Geometry of the Algebraic Riccati Equation. Parts I and II,”SIAM J. Control and Opt., 21, No. 3, May 1983, 375–409.Google Scholar
  11. 11.
    M. E. Van Valkenburg,Introduction to Modern Network Synthesis, New York: Wiley, 1960. (p. 128; pp. 150–153.)Google Scholar
  12. 12.
    H. S. Wall,Continued Fractions, New York: Van Nostrand, 1948.Google Scholar
  13. 13.
    G. N. Watson,A Treatise on the Theory of Bessel Functions, Second Edition. New York: MacMillan and Cambridge: University Press, 1944.Google Scholar
  14. 14.
    Andre Weil,Number Theory: An Approach Through History, Boston: Birkhäuser, 1984.Google Scholar
  15. 15.
    Harald Wimmer, Leonhard Euler und das Königsberger Brückenproblem—Latein als Sprache der Mathematik im 18. Jahrhundert,Informationen zum Altsprachlichen Unterricht, 3. Jahrgang, 2/1981.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1985

Authors and Affiliations

  • Myra F. Wyman
    • 1
  • Bostwick F. Wyman
    • 2
  1. 1.Dreher High SchoolColumbiaUSA
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations