Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Elastic field of cylindrical inclusion

Abstract

The elastic field of a cylindrical inclusion with plane or antiplane transformation strain is found under assumptions of linear isotropic homogeneous theory of elasticity. Different integral expressions are obtained from expressions known for the three-dimensional case and interpreted in terms of the theory of dislocations. The surface integrals correspond to a volume distribution of infinitesimal dislocation dipoles inside the inclusion, the line integrals to a surface distribution of dislocations in the boundary between the inclusion and matrix. The case of a shear transformation in a rectangular region is discussed in more detail in connection with twinning.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Eshelby J. D.: Proc. Roy. Soc.A 241 (1957), 376.

  2. [2]

    Eshelby J. D.: Proc. Roy. Soc.A 252 (1959), 561.

  3. [3]

    Eshelby J. D.: Progr. in Sol. Mech.2 (1961), 89.

  4. [4]

    Jaswon M. A., Bhargawa R. D.: Proc. Camb. Phil. Soc.57 (1961), 669.

  5. [5]

    Muschelišvili N. I.: Nekotoryje osnovnyje zadači matematičeskoj teorii uprugosti, AN SSSR, Moskva 1966.

  6. [6]

    Kroupa F.: Czech. J. Phys.B 12 (1962), 191.

  7. [7]

    Hirth J. P., Lothe J.: Theory of Dislocations, McGraw-Hill, New York 1968.

  8. [8]

    Eshelby J. D.: Solid State Physics3 (1956), 79.

  9. [9]

    Kroupa F.: Czech. J. Phys.B 15 (1965), 896.

  10. [10]

    Marcinkowski M. J.: J. Appl. Phys.39 (1968), 4522.

  11. [11]

    Marcinkowski M. J., Sree Harsha K. S.: Trans. MS AIME242 (1968), 1405.

  12. [12]

    Koehler J. S.: J. Appl. Phys.37 (1966), 4351.

  13. [13]

    Groves P. P., Bacon D. J.: J. Appl. Phys.40 (1969), 4208.

  14. [14]

    Kroupa F.:in Theory of Crystal Defects (Ed. Gruber), Academia, Prague 1966, p. 275.

  15. [15]

    Kroupa F.:in Mechanics of Generalized Continua (Ed. E. Kröner), Springer Verlag, Berlin 1968.

  16. [16]

    Faivre G.: Phys. Stat. Sol.35 (1969), 249.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kroupa, F., Lejček, L. Elastic field of cylindrical inclusion. Czech J Phys 20, 1063–1080 (1970). https://doi.org/10.1007/BF01695979

Download citation

Keywords

  • Volume Distribution
  • Transformation Strain
  • Rectangular Region
  • Integral Expression
  • Surface Integral