Neurochemical Research

, Volume 20, Issue 5, pp 509–519 | Cite as

Development of the human hypothalamus

  • D. F. Swaab


The hypothalamus has been claimed to be involved in a great number of physiological functions in development, such as sexual differentiation (gender, sexual orientation) and birth, as well as in various developmental disorders including mental retardation, sudden infant death syndrome (SIDS), Kallman's syndrome and Prader-Willi syndrome. In this review a number of hypothalamic nuclei have therefore been discussed with respect to their development in health and disease.

The suprachiasmatic nucleus (SCN) is the clock of the brain and shows circadian, and seasonal fluctuations in vasopressin-expressing cell numbers. The SCN also seems to be involved in reproduction, adding interest to the sex differences in shape of the vasopressin-containing SCN subnucleus and in its VIP cell number. In addition, differences in relation to sexual orientation can be seen in this perspective. The vasopressin and VIP, neurons of the SCN develop mainly postnatally, but as premature children may have circadian temperature rhythms, a different SCN cell type is probably more mature at birth.

Thesexually dimorphic nucleus (SDN, intermediate nucleus, INAH-1), is twice as large in young male adults as in young females. At the moment of birth only 20% of the SDN cell number is present. From birth until two to four years of age cell numbers increase equally rapidly in both sexes. After this age cell numbers start to decrease in girls, creating the sex difference. The size of the SDN does not show any relationship to sexual orientation in men. The large neurosecretory cells of thesupraoptic (SON) andparaventricular nucleus (PVN) project to the neurohypophysis, where they release vasopressin and oxytocin into the blood circulation. In the fetus these hormones play an active role in the birth process. Fetal oxytocin may initiate or accelerate the course of labor. Fetal vasopressin plays a role in the adaptation to stress—caused by the birth process—by redistribution of the fetal blood flow.

Corticotropin-releasing hormone (CRH) neurons of the PVN play a central role in stress response. Thus fetal CRH neurons may play a role in the timing of the moment of birth. Recently, alterations have been described in peptidergic, aminergic and cholinergic transmitters in the hypothalamus in SIDS. Future research will have to establish whether these changes are part of the course of SIDS. A large proportion of the SON and PVN neurons also produce tyrosine hydroxylase (TH). In neonates the majority of TH-immunoreactive neurons colocalizes vasopressin, while in the adult the majority of TH-positive neurons colocalizes oxytocin. TH-expression might be a sign of hyperactivation, for example from perinatal hypoxia.

Oxytocin neurons also project to the brain stem. These neurons have an inhibitory effect on eating. Interestingly, in the Prader-Willi syndrome, characterized for example by insatiable hunger, we have found that the number of oxytocin-expressing neurons is about half the normal value. It can be concluded that the various hypothalamic nuclei are involved in a great number of functions and show clear and differential changes in development with respect to sexual differentiation, birth and a number of diseases. I believe that only a small proportion of such changes has at present been revealed.

Key words

Human hypothalamus suprachiasmatic nucleus sexually dimorphic nucleus supraoptic nucleus paraventricular nucleus vasopressin oxytocin development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morgan, L. O. 1939. Alterations in the hypothalamus in mental deficiency. Psychosom. Med 1:496–507.Google Scholar
  2. 2.
    Swaab, D. F., Gooren, L. J. G., and Hofman, M. A. 1992. The human hypothalamus in relation to gender and sexual orientation. Pages 205–215in Swaab D. F., Hofman, M. A., Mirmiran, M., Ravid, R., Van Leeuwen, F. W. (eds.), The Human Hypothalamus in Health and Disease: Progress in Brain Research, Vol 93, Elsevier, Amsterdam.Google Scholar
  3. 3.
    Swaab, D. F., Fliers, E., and Partiman, T. S. 1985. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 342:37–44.PubMedGoogle Scholar
  4. 4.
    Rusak, B., Zucker, I. 1979. Neural regulation of circadian rhythms. Physiol. Rev. 59:449–526.PubMedGoogle Scholar
  5. 5.
    Swaab, D. F., Hofman, M. A. 1990. An enlarged suprachiasmatic nucleus in homosexual men. Brain Res. 537:141–148PubMedGoogle Scholar
  6. 6.
    Mai, J. K., Kedziora, O., Teckhaus, L., and Sofroniew, M. V. 1991. Evidence for subdivisions in the human suprachiasmatic nucleus. J. Comp. Neurol. 305:508–525.PubMedGoogle Scholar
  7. 7.
    Moore, R. Y. 1992. The organization of the human circadian timing system. Pages 99–117 in Swaab, D. F., Hofman, M. A., Mirmiran, M., Ravid, R., Van Leeuwen, F. W. (eds.), The Human Hypothalamus in Health and Disease, Progress in Brain Research, Vol. 93, Elsevier, Amsterdam.Google Scholar
  8. 8.
    Hofman, M. A., Swaab, D. F. 1992. Seasonal changes in the suprachiasmatic nucleus of man. Neurosci. Lett. 139:257–260.PubMedGoogle Scholar
  9. 9.
    Hofman, M. A., and Swaab, D. F. 1994. Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Res. 651:134–142.PubMedGoogle Scholar
  10. 10.
    Swaab, D. F., Hofman, M. A. 1990. An enlarged suprachiasmatic nucleus in homosexual men. Brain Res. 537:141–148.PubMedGoogle Scholar
  11. 11.
    Swaab, D. F., Roozendaal, B., Ravid, R., Velis, D. N., Gooren, L., Williams, R. S. 1987. Suprachiasmatic nucleus in aging, Alzheimer's disease, transsexuality and Prader-Willi syndrome. Pages 301–310in De Kloet R. et al. (eds.), Neuropeptides and Brain Function, Progress in Brain Research, Vol. 72, Elsevier, Amsterdam.Google Scholar
  12. 12.
    Honnebier, M. B. O. M., Swaab, D. F., Mirmiran, M., 1989. Diurnal rhythmicity during early human development. Pages 83–103in Reppert, S. M. (ed.), Development of Circadian Rhythmicity and Photoperiodism in Mammals, Perinatology Press, Ithaca, NY.Google Scholar
  13. 13.
    Reppert, S. M. 1992. Pre-natal development of a hypothalamic biological clock. Pages 119–132in Swaab, D. F., Hofman, M. A., Mirmiran, M., Ravid, R., Van Leeuwen, F. W. (eds.), The Human Hypothalamus in Health and Disease. Progress in Brain Research, Vol. 93, Elsevier, Amsterdam.Google Scholar
  14. 14.
    Mirmiran, M., and Kok, J. H. 1991. Circadian rhythms in early human development. Early Human Dev. 26:121–128.Google Scholar
  15. 15.
    Laemle, L. K. 1988. Vasoactive intestinal polypeptide (VIP.-like immunoreactivity in the suprachiasmatic nucleus of the perinatal rat. Dev. Brain Res. 41:308–312.Google Scholar
  16. 16.
    De Vries, G. J., Buijs, R. M., Swaab, D. F. 1981. Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain—presence of a sex difference in the lateral septum. Brain Res. 218:67–78.PubMedGoogle Scholar
  17. 17.
    Swaab, D. F., Zhou, J. N., Ehlhart, T., Hofman, M. A. 1994. Development of vasoactive intestinal polypeptide neurons in the human suprachiasmatic nucleus in relation to birth and sex. Dev. Brain Res. 79:249–259.Google Scholar
  18. 18.
    Gorski, R. A., Gordon, J. H., Shryne, J. E., Southam, A. M. 1978. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 148:333–346.PubMedGoogle Scholar
  19. 19.
    Jacobson, C. D., Shryne, J. E., Shapiro, F., Gorski, R. A. 1980. Ontogeny of the sexually dimorphic nucleus of the preoptic area. J. Comp. Neurol. 193:541–548.PubMedGoogle Scholar
  20. 20.
    Turkenburg, J. L., Swaab, D. F., Endert, E., Louwerse, A. L., Van de Poll, N. E. 1988. Effects of lesions of the sexually dimorphic nucleus on sexual behaviour of testosterone-treated female Wistar rats. Brain Res. Bull. 21:215–224.PubMedGoogle Scholar
  21. 21.
    De Jonge, F. H., Louwerse, A. L., Ooms, M. P., Evers, P., Endert, E., Van de Poll, N. E. 1989. Lesions of the SDN-POA inhibit sexual behavior of male Wistar rats. Brain Res. Bull. 23: 483–492.PubMedGoogle Scholar
  22. 22.
    Swaab, D. F., Fliers, E. 1985. A sexually dimorphic nucleus in the human brain. Science 228:1112–111.PubMedGoogle Scholar
  23. 23.
    Braak, H., Braak, E. 1987. The hypothalamus of the human adult: chiasmatic region. Anat. Embryol. 176:315–330.Google Scholar
  24. 24.
    Allen, L. S., Hines, M., Shryne, J. E., Gorski, R. A. 1989. Sex difference in the bed nucleus of the stria terminalis of the human brain. J. Comp. Neurol. 302:697–706.Google Scholar
  25. 25.
    Dörner, G., Staudt, J. 1972. Vergleichende morphologische Untersuchungen der Hypothalamusdifferenzierung bei Ratte und Mensch. Endokrinologie 59:S152–155.PubMedGoogle Scholar
  26. 26.
    Swaab, D. F., Hofman, M. A. 1988. Sexual differentiation of the human hypothalamus: ontogeny of the sexually dimorphic nucleus of the preoptic area. Dev. Brain Res. 44:314–318.Google Scholar
  27. 27.
    Hofman, M. A., and Swaab, D. F. 1989. The sexually dimorphic nucleus of the preoptic area in the human brain: a comparative morphometric study. J. Anat. 164:55–72.PubMedGoogle Scholar
  28. 28.
    Vermeulen, A. 1990. Androgens and male senescence. Pages 629–645in Nieschlag, E., Behre, H. M. (eds.), Testosterone: Action, Deficiency, Substitution. Springer Verlag, Berlin.Google Scholar
  29. 29.
    Dörner, G. 1988. Neuroendocrine response to estrogen and brain differentiation in heterosexuals, homosexuals, and transsexuals. Arch. Sexual. Behav. 17:57–75.Google Scholar
  30. 30.
    Gladue, B. A., Green, R., and Helleman, R. E. 1984. Neuroendocrine response to estrogen and sexual orientation. Science 225: 1496–1499.PubMedGoogle Scholar
  31. 31.
    Fliers, E., Guldenaar, S. E. F., Van de Wal, N., Swaab, D. F. 1986. Extrahypothalamic vasopressin and oxytocin in the human brain: presence of vasopressin cells in the bed nucleus of the stria terminalis. Brain Res. 375:363–367.PubMedGoogle Scholar
  32. 32.
    Carter, L. S. 1992. Oxytocin & Sexual Behavior. Neurosc. Biolehav. Res. 16:131–144.Google Scholar
  33. 33.
    Insel, T. R. 1992. Oxytocin—a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 17:3–35.PubMedGoogle Scholar
  34. 34.
    Murphy, M. R., Seckl, J. R., Burton, S., Checkley, S. A., Lightman, S. L. 1987. Changes in oxytocin and vasopressin secretion during sexual activity in men. J. Clin. Endocrinol. Metab. 65: 738–741.PubMedGoogle Scholar
  35. 35.
    Spencer, S., Saper, C. B., Joh, T., Reis, D. J., Goldstein, M., Raese, J. D. 1985. Distribution of catecholamine-containing neurons in the normal human hypothalamus. Brain Res. 328:73–80.PubMedGoogle Scholar
  36. 36.
    Panayotacopoulou, M. T., Swaab, D. F. 1993. Development of tyrosine hydroxylase-immunoreactive neurons in the human paraventricular and supraoptic nuclei. Dev. Brain Res. 72:145–150.Google Scholar
  37. 37.
    Dierickx, K., Vandesande, F. 1977. Immunocytochemical localization of the vasopressinergic and the oxytocinergic neurons in the human hypothalamus. Cell Tissue Res. 184:15–27.PubMedGoogle Scholar
  38. 38.
    Goudsmit, E., Hofman, M. A., Fliers, E., Swaab, D. F. 1990. The supraoptic and paraventricular nuclei of the human hypothalamus in relation to sex, age and Alzheimer's disease. Neurobiol. Aging 11:529–536.PubMedGoogle Scholar
  39. 39.
    Fliers, E., Swaab, D. F., Pool, C. W., and Verwer, R. W. H. 1985. The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleus: Changes with aging and in senile dementia. Brain Res. 342:45–53.PubMedGoogle Scholar
  40. 40.
    Morton, A. 1961. A quantitative analysis of the normal neuron population of the hypothalamic magnocellular nuclei in man and of their projections to the neurohypophysis. J. Comp. Neurol. 136:143–158.Google Scholar
  41. 41.
    Wierda, M., Goudsmit, E., Van der Woude, P. F., Purba, J. S., Hofman, M. A., Bogte, H., Swaab D. F. 1991. Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer's disease. Neurobiol. Aging 12:511–516.PubMedGoogle Scholar
  42. 42.
    Purba, J. S., Hofman, M. A., Portegies, P., Troost, D., Swaab, D. F. 1993. Decreased number of oxytocin neurons in the paraventricular nucleus of the human hypothalamus in AIDS. Brain Res. 116:795–809.Google Scholar
  43. 43.
    Van der Woude, P. F., Goudsmit, E., Wierda, M., Purba, J. S., Hofman, M. A., Bogte, H., Swaab, D. F. 1994. No vasopressin cell loss in the human paraventricular and supraoptic nucleus during aging and in Alzheimer's disease. Neurobiol. Aging 16:11–18.Google Scholar
  44. 44.
    Bahnsen, U., Oosting, P., Swaab, D. F., Nahke, P., Richter, D., Schmale, H. 1992. A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J. 11:19–23.PubMedGoogle Scholar
  45. 45.
    Ito, M., Mori, Y., Oiso, Y., Saito, H. 1991. A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J. Clin. Invest. 87:725–728.PubMedGoogle Scholar
  46. 46.
    Braverman, L. E., Mancini, J. P., McGoldrick, D. M. 1965. Hereditary idiopathic diabetes insipidus: A case report with autopsy findings. Ann. Intern. Med. 63:503–508.PubMedGoogle Scholar
  47. 47.
    Nagai, L., Li, C. H., Hsieh, S. M., Kizaki, T., Urano, Y. 1984. Two cases of hereditary diabetes insipidus, with an autopsy finding in one. Acta Endocrinol. 105:318–323.PubMedGoogle Scholar
  48. 48.
    Bergeron, C., Kovacs, K., Ezrin, C., Mizzen, C. 1991. Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol. 81:345–348.PubMedGoogle Scholar
  49. 49.
    Schriefer, J. A., Lewis, P. R., and Miller, J. W. 1982. Role of fetal oxytocin in parturition in the rat. Biol. Reprod. 27:362–368.PubMedGoogle Scholar
  50. 50.
    Swaab, D. F., Boer, K., Honnebier, W. J. 1977. The influence of the fetal hypothalamus and pituitary on the onset and course of parturition. Pages 379–400in Knight, J. and O'Connor, M. (eds.), The Fetus and Birth, Ciba Foundation Symposium 47, Elsevier/North-Holland Biomedical Press, Amsterdam-New York.Google Scholar
  51. 51.
    Boer, K., Dogterom, J., and Pronker, H. F. 1980. Pituitary content of oxytocin, vasopressin and α-melanocyte-stimulating hormone in the fetus of the rat during labour. J. Endocrinol. 86:221–229.PubMedGoogle Scholar
  52. 52.
    Chard, T., Hudson, C. N., Edwards, C. R. W., Boyd, N. R. H. 1971. Release of oxytocin and vasopressin by the human foetus during labour. Nature 234:352–353.PubMedGoogle Scholar
  53. 53.
    Oosterbaan, H. P., Swaab, D. F. 1989. Amniotic oxytocin and vasopressin in relation to human fetal development and labour. Early Hum. Dev. 19:253–262.PubMedGoogle Scholar
  54. 54.
    Iwamoto, H. S., Rudolph, A. M., Keil, L. C., Heymann, M. A. 1979. Hemodynamic responses of the sheep fetus to vasopressin infusion. Circ. Res. 44:430–436.PubMedGoogle Scholar
  55. 55.
    Pohjavuori, M., Fyhrquist, J. 1980. Hemodynamic significance of vasopressin in the newborn infant. J. Pediatr. 97:462–465.PubMedGoogle Scholar
  56. 56.
    Burford, G. D., Robinson, I. C. A. F. 1982. Oxytocin, vasopressin and neurophysins in the hypothalamo-neurohypophysial system of the human fetus. J. Endocrinol. 95:403–408.PubMedGoogle Scholar
  57. 57.
    Khan-Dawood, F. S., Dawood, M. Y. 1984. Oxytocin content of human fetal pituitary glands. Am. J. Obstet. Gynecol. 148:420–422.PubMedGoogle Scholar
  58. 58.
    Schubert, F., George, J. M., Bhaskar Rao M. 1981. Vasopressin and oxytocin content of human fetal brain at different stages of gestation. Brain Res. 213:111–117.PubMedGoogle Scholar
  59. 59.
    Paulin, C., Dubois, P. M. 1978. Immunocytological evidence for oxytocin neurons in the human fetal hypothalamus. Cell Tiss. Res. 188:259–264.Google Scholar
  60. 60.
    Skowsky, W. R., Fisher, D. A. 1977. Fetal neurohypophyseal arginine vasopressin and arginine vasotocin in man and sheep. Pediatr. Res. 11:627–630.PubMedGoogle Scholar
  61. 61.
    Bugnon, C., Fellmann D., Bloch, B., Bresson, J. L., Gouget, A., Lenys, D., Clavequin, M. C. 1987. Appor de l'immunocytochimie a l'étude du developpement de systemes neuroglandulaires peptidergiques dans l'hypothalamus foetal humain, Ann. d'Endocrinol. 48:343–351.Google Scholar
  62. 62.
    Fellmann, D., Bloch, B., Bugnon, C., Lenys, D. 1979. Etude immunocytologique de la maturation des axes neuroglandulaires hypothalamo-neurohypophysaires chez le foetus humain. J. Physiol. 75:37–43.Google Scholar
  63. 63.
    Murayama, K., Meeker, R. B., Murayama S., and Greenwood, R. S. 1993. Developmental expression of vasopressin in the human hypothalamus: double-labeling with in situ hybridization and immunocytochemistry. Pediatr. Res. 33:152–158.PubMedGoogle Scholar
  64. 64.
    Rinne, U. K., Kivalo, E., Talanti, S. 1962. Maturation of human hypothalamic neurosecretion. Biol. Neonat. 4:351–364.PubMedGoogle Scholar
  65. 65.
    Oosterbaan, H. P., Swaab, D. F. 1987 Circulating neurohypophysial hormones in anencephalic infants. Am. J. Obstet Gynecol. 157:117–119.PubMedGoogle Scholar
  66. 66.
    Visser, M., Swaab, D. F. 1979. Life span changes in the presence of melanocyte stimulating hormone containing cells in the human pituitary. J. Dev. Physiol. 1:161–178.PubMedGoogle Scholar
  67. 67.
    Wharton, R. H., Bresman, M. J. 1989. Neonatal respiratory depression and delay in diagnosis in Prader-Willi syndrome. Dev. Med. Child Neurol. 31:231–236.PubMedGoogle Scholar
  68. 68.
    Swaab, D. F., Purba, J. S., Hofman, M. A. 1995. Disorder of the paraventricular nucleus and its putative satiety cells—the oxytocin neurons—in Prader-Willi syndrome patients. J. Clin Endocrinol Metab. (in press).Google Scholar
  69. 69.
    Daniel S. S., Stark, R. I., Zubrow, A. B., Fox, H. E., Husain, M. K., James, L. S. 1983. Factors in the release of vasopressin by the hypoxic fetus. Endocrinology 113:1623–1628.PubMedGoogle Scholar
  70. 70.
    Parboosingh, J., Lederis, K., Singh, N. 1982. Vasopressin concentration in cord blood: correlation with method of delivery and cord pH. Obstet. Gynecol. 60:179–183.PubMedGoogle Scholar
  71. 71.
    Panayotacopoulou, M. T., Raadsheer, F. C., Swaab, D. F. 1994. Colocalization of tyrosine hydroxylase with oxytocin or vasopressin in neurons of the human paraventricular and supraoptic nucleus. Develop. Brain Res. 83:59–66.Google Scholar
  72. 72.
    Honnebier, W. J., Swaab, D. F. 1973. The influence of anencephaly upon intrauterine growth of fetus and placenta and upon gestation length. J. Obstet. Gynaecol. Brit. Cwlth. 80:577–588.Google Scholar
  73. 73.
    Raadsheer, F. C., Sluiter, A. A., Ravid, R., Tilders, F. J. H., Swaab, D. F. 1993. Localization of corticotropin-releasing hormone CRH. neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Res. 615:50–62.PubMedGoogle Scholar
  74. 74.
    Raadsheer, F. C. 1994. Age-related increase in the total number of corticotropin-releasing hormone neurons in the human paraventricular nucleus in controls and Alzheimer's disease: comparison of the disector with an unfolding method. J. Comp. Neurol. 339:447–457.PubMedGoogle Scholar
  75. 75.
    Kennedy, P., Kendrick, J. W., and Stormont, C. 1957. Adenohypophyseal aplasia, an inherited defect associated with abnormal gestation in Guernsey cattle. Cornell Vet. 47:160–178.PubMedGoogle Scholar
  76. 76.
    Binns, W., James, L. F., Shupe, J. L. 1964. The human brain in figures and tables. A quantitative handbook. Page 336, table 115 in Basic Books. Plenum Press, New York.Google Scholar
  77. 77.
    Drost, M., Holm, L. W. 1968. Prolonged gestation in ewes after foetal adrenalectomy. J. Endocrinol. 40:293–296.PubMedGoogle Scholar
  78. 78.
    Liggins, G. C., Kennedy, P. C., and Holm, L. W. 1967. Failure of imitation of parturition after electrocoagulation of the pituitary of the fetal lamb. Am. J. Obstet. Gynecol. 98:1080–1086.PubMedGoogle Scholar
  79. 79.
    Liggins, G. C., Kennedy, P. C. 1968. Effects of electrocoagulation of the foetal lamb hypophysis on growth and development. J. Endocr. 40:371–381.PubMedGoogle Scholar
  80. 80.
    Liggins, G. C. 1969. Premature delivery of foetal lambs infused with glucocorticoids. J. Endocrinol. 45:515–523.PubMedGoogle Scholar
  81. 81.
    McDonald, T. J., Nathanielsz, P. W. 1991. Bilateral destruction of the fetal paraventricular nuclei prolongs gestation in sheep. Am. J. Obstet. Gynecol. 165:764–770.PubMedGoogle Scholar
  82. 82.
    Swaab, D. F., Boer, G. J., Boer, K., Dogterom, J., Van Leeuwen, F. W., Visser, M. 1978. Fetal neuroendocrine mechanisms in development and parturition. Pages 277–289 in Maturation of the Nervous System, Progress in Brain Research, Vol. 48, Corner, M. A., Baker, R. E., Van de Poll, N. E., Swaab, D. F., and Uylings, H. B. M. (eds.), Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  83. 83.
    Swaab, D. F., Boer, K. 1979. Function of pituitary hormones in human parturition—a comparison with data in the rat Pages 49–71in Keirse, M. J. N. C., Anderson, A. M. B., and Bennebroek Gravenhorst, J. (eds.), Human Parturition, Martinus Nijhoff Publishers B. V., The Hague.Google Scholar
  84. 84.
    Li, Y. W., Halliday, G. M., Joh, T. H., Geffen, L. B., Blessing, W. W. 1988. Tyrosine-hydroxylase-containing neurons in the supraoptic and paraventricular nuclei of the adult human. Brain Res. 461:75–86.PubMedGoogle Scholar
  85. 85.
    Panayotacopoulou, M. T., Guntern, R., Bouras, C., Issidorides, M. R., and Constantinidis, J. 1991. Tyrosine hydroxylase-immunoreactive neurons in paraventricular and supraoptic nuclei of the human brain demonstrated by a method adapted to prolonged formalin fixation. J. Neurosci. Meth. 39:39–44.Google Scholar
  86. 86.
    Buijs, R. M., De Vries, G. J., Van Leeuwen, F. W., and Swaab, D. F. 1983. Vasopressin and oxytocin: distribution and putative functions in the brain. Pages 115–122,in Cross, B. A. and Leng, G. A. (eds.), The neurohypophysis: structure, function and control, Progress in Brain Research, Vol. 60.Google Scholar
  87. 87.
    De Vries, G. J., and Buijs, R. M. 1983 The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res. 273:307–317.PubMedGoogle Scholar
  88. 88.
    Voorn, P., Buijs, R. M. 1983. An immuno-electronmicroscopical study comparing vasopressin, oxytocin, substance P and enkephalin containing nerve terminals in the nucleus of the solitary tract of the rat. Brain Res. 270:169–173.PubMedGoogle Scholar
  89. 89.
    Leibowitz, S. F., Hammer, N. J., and Chang, K. 1981. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav. 27:1031–1040.PubMedGoogle Scholar
  90. 90.
    Rogers, R. C., Hermann, G. E. 1986. Oxytocin, oxytocin antagonist, TRH, and hypothalamic paraventricular nucleus stimulation effects on gastric motility. Peptides 8:505–513.Google Scholar
  91. 91.
    Arletti, R., Benelli, A., Bertolini, A. 1989. Influence of oxytocin on feeding behavior in the rat. Peptides 10:89–93.PubMedGoogle Scholar
  92. 92.
    Benelli, A., Bertolini, A., Arletti, R. 1991. Oxytocin-induced inhibition of feeding and drinking: no sexual dimorphism in rats. Neuropeptides 20:57–62.PubMedGoogle Scholar
  93. 93.
    Olson, B. R., Drutarosky, M. D., Stricker, E. M., Verbalis, J. G. 1991a. Brain oxytocin receptor antagonism blungs the effects of anorexigenic treatments in rats: evidence for central oxytocin inhibition of food intake. Endocrinology 129:785–791.PubMedGoogle Scholar
  94. 94.
    Olson, B. R., Drutarosky, M. D., Chow, M. S., Hruby, V. J., Stricker, E. M., Verbalis, J. G. 1991b. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides 12:113–118.PubMedGoogle Scholar
  95. 95.
    Smeets, D. F. C. M., Hamel, B. C. J., Smeets, H. J. M., Bollen, J. H. M., Smits, A. P. T., Ropers, H. H., Van Oost, B. A. 1992. Prader-Willi syndrome and Angelman syndrome in cousins from a family with a translocation between chromosomes 6 and 15. New Engl. J. Med. 326:807–811.PubMedGoogle Scholar
  96. 96.
    Prader, A., Labhart, A., and Willi, H. 1956. Ein Syndrom von Adipositas, Kleinwuchs, Krytorchismus und Oligophrenie nach Myotonieartigem Zustand in Neugeborenalter. Schweiz. Med. Wochenschr., 86:1260–1261.Google Scholar
  97. 97.
    Argiolas, A. 1992. Oxytocin stimulation of penile erection, Pharmacology, site, and mechanism of action. Pages 194–203in Pedersen, C. A., Caldwell, J. D., Jirikowski, G. F. and Insell, T. R. (eds.), Oxytocin in maternal, sexual, and social behaviors, Vol. 652, NY Acad. Sci.Google Scholar
  98. 98.
    Arletti, R., Benelli, A., Bertolini, A. 1992. Oxytocin involvement in male and female sexual behavior. Pages 180–193in Pedersen, C. A., Caldwell, J. D., Jirikowski, G. F. and Insell, T. R. (eds.), Oxytocin in maternal, sexual, and social behaviors Vol. 652, NY Acad. Sci.Google Scholar
  99. 99.
    Hughes, A. M., Everitt, B. J., Lightman, S. L., and Todd, K. 1987. Oxytocin in the central nervous system and sexual behavior in male rats. Brain Res. 414:133–137.PubMedGoogle Scholar
  100. 100.
    Kopp, N., Najimi, M., Champier, J., Chigr, F., Charnay, Y., Epelbaum, J., Jordan, D. 1992. Ontogeny of peptides in human hypothalamus in relation to sudden infant death syndrome (SIDS). Pages 167–188in Swaab, D. F., Hofman, M. A., Mirmiran, M., Ravid, R., Van Leeuwen, F. W. (eds.), The Human Hypothalamus in Health and Disease, Progress in Brain Research, Vol, 93, Elsevier, Amsterdam.Google Scholar
  101. 101.
    Sparks, D. L., Hunsaker, J. C. 1991. Sudden infant death syndrome: altered aminergic-cholinergic synaptic markers in hypothalamus. J. Child Neurol. 6:335–339.PubMedGoogle Scholar
  102. 102.
    Braak, H., Braak, E. 1992. Anatomy of the human, hypothalamus (chiasmatic and tuberal region. Pages 3–16in Swaab, D. F., Hofman, M. A., Mirmiran, M., Ravid, R., Van Leeuwen, F. W. (eds.), The Human Hypothalamus in Health and Disease, Progress in Brain Research, Vol. 93. Elsevier, Amsterdam.Google Scholar
  103. 103.
    Goudsmit, E., Neijmeijer-Leloux, A., Swaab, D. F. 1992. The human hypothalamo-neurohypophyseal system in relation to development, aging and Alzheimer's disease. Pages 237–248,in Swaab, D. F., Hofman, M. A., Mirmiran, M., Ravid, R. and Van Leeuwen, F. W. (eds.), The Human Hypothalamus in Health and Disease, Progress in Brain Research, Vol 92. Elsevier, Amsterdam.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • D. F. Swaab
    • 1
  1. 1.Netherlands Institute for Brain ResearchGraduate School Neurosciences AmsterdamAmsterdam, ZOThe Netherlands

Personalised recommendations