Mathematical systems theory

, Volume 5, Issue 3, pp 246–258 | Cite as

A unified approach to the definition of random sequences

  • C. P. Schnorr


Using the concept of test functions, we develop a general framework within which many recent approaches to the definition of random sequences can be described. Using this concept we give some definitions of random sequences that are narrower than those proposed in the literature. We formulate an objection to some of these concepts of randomness. Using the notion of effective test function, we formulate a thesis on the “true” concept of randomness.


Computational Mathematic General Framework Random Sequence Unify Approach Recent Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Bishop,Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.Google Scholar
  2. [2]
    L. E. J. Brouwer, Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil. Verh. Niederl. Akad. Wetensch. Afd. Natuurk. Sect. I12 (1919), 7.Google Scholar
  3. [3]
    J. Hartmanis andR. E. Stearns, On the computational complexity of algorithms,Trans. Amer. Math. Soc. 117 (1965), 285–306.Google Scholar
  4. [4]
    A. N. Kolmogoroff, Tri podhoda k opredeleniju ponjatija “količestvo informacii”,Problemy Peredači Informacii 1 (1965), 3–11.Google Scholar
  5. [5]
    D. Loveland, On minimal program complexity measures,ACM Symposium on Theory of Computing, pp. 61–66, May 5–7, 1969.Google Scholar
  6. [6]
    P. Martin-Löf, The definition of random sequences,Information and Control 9 (1966), 602–619.Google Scholar
  7. [7]
    P. Martin-Löf, Complexity oscillations in infinite binary sequences, unpublished.Google Scholar
  8. [8]
    R. von Mises, Grundlagen der Wahrscheinlichkeitstheorie,Math. Z. 5 (1919), 52–99.Google Scholar
  9. [9]
    C. P. Schnorr, Eine Bemerkung zum Begriff der zufälligen Folge,Z. Wahrscheinlichkeitstheorie Verw. Gebiete 14 (1969), 27–35.Google Scholar
  10. [10]
    C. P. Schnorr, Über die Definition von effektiven Zufallstests, I–II,Z. Wahrscheinlichkeitstheorie Verw. Gebiete 15 (1970), 297–312, 313–328.Google Scholar
  11. [11]
    C. P. Schnorr, Klassifikation der Zufallsgesetze nach Komplexität und Ordnung,Z. Wahrscheinlichkeitstheorie Verw. Gebiete 16 (1970), 1–21.Google Scholar
  12. [12]
    C. P. Schnorr, Über die Zufälligkeit und den Zufallsgrad von Folgen, Symposium on Formale Sprachen und Automatentheorie, Oberwolfach, 1969.Google Scholar
  13. [13]
    E. Specker, Nicht konstruktiv beweisbare Sätze der Analysis,J. symb. Logic 14 (1949), 145–158.Google Scholar
  14. [14]
    R. J. Solomonoff, A formal theory of inductive inference, I,Information and Control 7 (1964), 1–22.Google Scholar
  15. [15]
    J. Ville,Étude Critique de la Notion de Collectif, Gauthiers-Villars, Paris, 1939.Google Scholar
  16. [16]
    C. P. Schnorr, Zufälligkeit und Wahrscheinlichkeit,Lecture Notes in Mathematics (in preparation).Google Scholar
  17. [17]
    M. Davis,Computability and Unsolvability, McGraw-Hill, New York, 1958.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • C. P. Schnorr
    • 1
  1. 1.Institut für Angewandte MathematikUniversität SaarbrückenWest Germany

Personalised recommendations