Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantum poincaré group for isotropic quantum space-time

  • 15 Accesses

Abstract

Possibilities of isotropic deformation of space-time are studied. The result is the two-parameter deformation. A differential calculus on the quantum space-time is constructed and the quantum differential geometry is formulated. A group of rigid motion of quantum space-time is investigated. This group is an example of a quantized braided group.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Rembieliński J.: Quantum braided Poincaré group. Preprint KFT UL 7/93, Lódź Univ., 1993.

  2. [2]

    Manin Yu. I.: Quantum Groups and Non-Commutative Geometry. Centre de Recherches Mathématiques, Montreal, 1988.

  3. [3]

    Lukierski J., Nowicki A., Ruegg H., and Tolstoy V. N.: Phys. Lett. B264 (1991) 331.

  4. [4]

    Lukierski J., Nowicki A., and Ruegg H.: Phys. Lett. B293 (1992) 344.

  5. [5]

    Zakrzewski S.: J. Phys. A27 (1994) 2075.

  6. [6]

    Wess J. and Zumino B.: Nuclear Phys. (Proc. Suppl.) B18 (1990) 302.

  7. [7]

    Brzeziński T., Dąbrowski H., and Rembieliński J.: J. Math, Phys.33 (1992) 19.

  8. [8]

    Majid S.: J. Math. Phys.32 (1991) 3246.

  9. [9]

    Majid S.: J. Math. Phys.34 (1993) 2045.

  10. [10]

    Majid S.: Math. Proc. Cambr. Phil. Soc.113 (1993) 45.

  11. [11]

    Hlavatý L.: J. Math. Phys.35 (1994) 2560.

Download references

Author information

Additional information

This work is supported under the KBN grant No. 2P3.02.21706 p. 01.

I am grateful for an encouragement and many interesting discussions to J. Rembieliński. I would also like to thank J. Lukierski and P. Maślanka for the discussion during the 3rd Colloquium on Quantum Groups in Prague.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smoliński, K.A. Quantum poincaré group for isotropic quantum space-time. Czech J Phys 44, 1101–1107 (1994). https://doi.org/10.1007/BF01690462

Download citation

Keywords

  • Differential Geometry
  • Braided Group
  • Rigid Motion
  • Differential Calculus
  • Isotropic Quantum