Advertisement

Czechoslovak Journal of Physics B

, Volume 22, Issue 10, pp 974–994 | Cite as

Group analysis of domains and domain pairs

  • V. Janovec
Article

Abstract

Basic symmetry properties of transformation twins and of ferroelectric or ferromagnetic domains are examined in terms of the abstract group theory. It is shown that the crystallographical relations between domains (twin components) and between domain pairs can be deduced from the decomposition of the symmetry group of the high symmetry phase into the left and double cosets of the group of the low symmetry phase. Expressions are derived for the numbers of proper and improper domains, for the number of crystallographically equivalent low symmetry phases, and for the number of crystallographically non-equivalent domain pairs. A classification of domain pairs according to their symmetry is proposed. The domain structure of the monoclinic phase in WO3 and the Dauphiné twinning in quartz are analysed as illustrative examples.

Keywords

Quartz Symmetry Group Domain Structure Group Analysis Symmetry Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zheludev I. S., Shuvalov L. A.: Kristallografiya1 (1956), 681.Google Scholar
  2. [2]
    Shuvalov L. A.: J. Phys. Soc. Japan28, Supplement (1970), 38.Google Scholar
  3. [3]
    Zheludev I. S.:in Solid State Physics. Edited by H. Ehrenreich, F. Seitz, D. Turnbull, Academic Press, New York 1971, Vol. 26, p. 429.Google Scholar
  4. [4]
    Aizu K.: J. Phys. Soc. Japan27 (1969), 387.Google Scholar
  5. [5]
    Aizu K.: Phys. Rev.B 2 (1970), 754.Google Scholar
  6. [6]
    Ascher E.: Helv. Phys. Acta39 (1966), 466.Google Scholar
  7. [7]
    Ascher E.: Group-theoretical Considerations on Ferroelectric Phase Transitions and Polarisation Reversals, Lecture Notes, Battelle Institute, Geneva 1967; Chem. Phys. Letters1 (1967), 69.Google Scholar
  8. [8]
    Indenbom V. L.:in Physics of Imperfect Crystals, Proc. of the School held in Telavi. Tbilisi 1966, Vol. I, p. 5.Google Scholar
  9. [9]
    Kroupa F., Janovec V.: to be published.Google Scholar
  10. [10]
    Dvořák V.: J. Phys. Soc. Japan28, Supplement (1970), 252.Google Scholar
  11. [11]
    Landau L., Lifshitz E. M.: Statistical Physics. Addison-Wesley, New York 1958, Ch. 14.Google Scholar
  12. [12]
    Ascher E.: Physics Letters20 (1966), 352.Google Scholar
  13. [13]
    Tisza L.: Ann. Phys. (N.Y.)13 (1961), 1.Google Scholar
  14. [14]
    Gränicher H., Müller K. A.: Materials Research Bulletin6 (1971), 977.Google Scholar
  15. [15]
    Lang S.: Algebra. Addison-Wesley, Reading, Mass. 1965, Ch. I, § 5.Google Scholar
  16. [16]
    Birman J. L.:in Proc. of the Symposium on Ferroelectricity. Edited by E. F. Weller, Elsevier Publ. Co, New York 1967, p. 20.Google Scholar
  17. [17]
    Devonshire A. F.: Phil. Mag.40 (1949), 1040; ibid.42 (1951), 1065.Google Scholar
  18. [18]
    Levanyuk A. P., Sannikov D. G.: Zh. eksper. teor. Fiz.60 (1971), 1109.Google Scholar
  19. [19]
    Jansen L., Boon M.: Theory of Finite Groups. North-Holland Publ. Co., Amsterdam 1967.Google Scholar
  20. [20]
    Hall M.: The Theory of Groups. The Macmillan Co., New York 1959.Google Scholar
  21. [21]
    Speiser A.: Theorie der Gruppen von endlicher Ordnung. J. Springer, Berlin 1937.Google Scholar
  22. [22]
    Känzig W.:in Solid State Physics. Edited by F. Seitz, D. Turnbull, Academic Press, New York 1957, Vol. 4, p. 1.Google Scholar
  23. [23]
    Kovalev O. V.: Irreducible Representations of the Space Groups. Gordon and Breach, New York 1965.Google Scholar
  24. [24]
    Fousek J.: private communication.Google Scholar
  25. [25]
    Ascher E.: Properties of Shubnikov Point Groups (Part 1). Report from Battelle Institute, Geneva.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1972

Authors and Affiliations

  • V. Janovec
    • 1
  1. 1.Institute of PhysicsCzechosl. Acad. Sci.Prague

Personalised recommendations