Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

D=2 and D=4 realization of κ-conformal algebra

  • 14 Accesses


We describe the generators ofκ-conformal transformations leaving invariant theκ-deformed d'Alembert equation. For the case D=4 the algebraic structure of the conformal extension of the off-shell spin zero realization ofκ-Poincaré algebra is discussed. Then the D=2 off-shell realization ofκ-conformal algebra for arbitrary spin and its commutation relations are studied.

This is a preview of subscription content, log in to check access.


  1. [1]

    Ogievetsky O., Schmidke W.B., Wess J., and Zumino B.: Comm. Math. Phys.150 (1992) 495.

  2. [2]

    Lukierski J. and Nowicki A.: Phys. Lett. B279 (1992) 299.

  3. [3]

    Dobrev V.: Preprint Göttingen University, July 1991; revised version: J. Phys. A26 (1993) 1317.

  4. [4]

    Dobrev V.:in Quantum Groups, Integrable Statistical Models and Knot Theory, Nankai Lectures on Math. Physics (eds. M.L. Ge and H.J. de Vega), World Scientific, Singapore, 1993, p. 1.

  5. [5]

    Floreanini R. and Vinet L.: Quantum Symmetries of q-Difference Equations, Preprint CRM-2167/1994, Université de Montréal, 1994.

  6. [6]

    Lukierski J., Nowicki A., Ruegg H., and Tolstoy V.N.: Phys. Lett. B264 (1991) 331.

  7. [7]

    Giller S., Kunz J., Kosiński P., Majewski M., and Maślanka P.: Phys. Lett B286 (1992) 57.

  8. [8]

    Lukierski J., Nowicki A., and Ruegg H.: Phys. Lett. B293 (1992) 344.

  9. [9]

    Lukierski J., Ruegg H., and Rühl W.: Phys. Lett. B313 (1993) 357.

  10. [10]

    Bacry H.: J. Phys. A26 (1993) 5413.

  11. [11]

    Majid S. and Ruegg H.: Phys. Lett. B334 (1994) 348.

  12. [12]

    Lukierski J., Ruegg H., and Zakrzewski W.J.: Preprint, Durham University, July 1991; preprint hep-th/9312153.

  13. [13]

    Klimek M. and Lukierski J.:κ-Deformed Realization of D=4 Conformal Algebra, Preprint hep-th/9504110; Acta Phys. Polon. B26 (1995) 1209.

  14. [14]

    Lukierski J., Minnaert P., and Mozrzymas M.: Quantum Deformations of Conformal Algebras Introducing Fundamental Mass Parameters, Preprint CPTMB/PT/95-6, Université Bordeaux I, June 1995.

Download references

Author information

Additional information

Supported by KBN grant 2P 302 087 06.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klimek, M. D=2 and D=4 realization of κ-conformal algebra. Czech J Phys 46, 187–194 (1996). https://doi.org/10.1007/BF01688810

Download citation


  • Commutation Relation
  • Algebraic Structure
  • Arbitrary Spin
  • Conformal Extension