Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Rapid estimation of 4,4′-dichlorobenzilic acid in human urine after dicofol exposure

  • 37 Accesses

  • 4 Citations

This is a preview of subscription content, log in to check access.

References

  1. Black RF, Kurtz CP, Baum H (1971) Gas-chromatographic analysis of kelthane technical. J Assoc Off Anal Chem 54:1237–1240

  2. Blinn RC, Gunther FA, Kolbezen MJ (1954) Microdetermination of the acaracide ethyl p,p'dichlorobenzilate(chlorobenzilate). J Agric Food Chem 2:1080–1083

  3. Brady SS, Enos HF, Levy KA (1980) Chlorobenzilate residues in urine. Bull Environ Contam Toxicol 24:813–814

  4. Brady SS, Levy KA, Enos HF, Duncan RC, Pfaffenberger CD (1982) Development of methodology for determining human exposure to Chlorobenzilate. In Plimmer JR (ed) Pesticide residues and exposure. ACS Symp Ser 182, ACS Washington, DC pp 105–118

  5. Brown JR, Hughes H, Viriyanontha S (1969) Storage, distribution and metabolism of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethanol. Toxicol Appl Pharmacol 15:30–37

  6. Gillett JW, Van der Gest LPS, Miskus RP (1964) Column partition chromatography of DDT and related compounds. Anal Biochem 8:200–209

  7. Gordon C, Haines L, Martin J (1963) An improved method for kelthane residue analysis with applications for determination of residues in milk. J Agric Food Chem 11:84–86

  8. Gunther FA, Blinn RC (1957) Ultraviolet spectrophotometric microdetermination of the acaricide 4,4′-dichloro-alpha-(trichloromethyl)-benzhydrol-(FW 152). J Agric Food Chem 5:517–519

  9. Hughes J (1961) Colorimetric determination of ‘kelthane’ residues. Analyst 86:756–757

  10. Kovacs MF Jr (1966) Rapid detection of chlorinated pesticide residues by an improved TLC technique: 3-1/4 × 4″ micro slides. J Assoc Off Anal Chem 49:365–370

  11. Kvalvag J, Iwata Y, Gunther FA (1979) High-pressure liquid chromatographic separation of o,p'-and p,p'-dicofol and their dichlorobenzophenone degradation products. Bull Environ Toxicol 21:25–28

  12. Morgan NL (1968) Separation of dicofol (kelthane) and its dichlorobenzophenone degradation product from a standard florisil column. Bull Environ Contam Toxicol 3:254–257

  13. Morgan DP, Roan CC (1971) Absorption, storage, and metabolic conversion of ingested DDT and DDT metabolites in man. Arch Environ Hlth 22:301–308

  14. Roan C, Morgan D, Paschal EH (1971) Urinary excretion of DDA following ingestion of DDT and DDT metabolites in man. Arch Environ Hlth 22:309–315

  15. Skow CAR, Bicking MKL (1986) Direct alkylation of carboxylic in aqueous samples. Chromatographia 21:157–160

  16. U.S. EPA (1984) Notice of Special Review. Fed. Reg. 49:10569

  17. Wolfe HR, Durham WF, Armstrong JF (1970) Urinary excretion of insecticide metabolites. Arch Environ Hlth 21:711–716

Download references

Author information

Correspondence to H. N. Nigg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deshmukh, S.N., Nigg, H.N., Stamper, J.H. et al. Rapid estimation of 4,4′-dichlorobenzilic acid in human urine after dicofol exposure. Bull. Environ. Contam. Toxicol. 39, 498–505 (1987). https://doi.org/10.1007/BF01688316

Download citation

Keywords

  • Waste Water
  • Water Management
  • Water Pollution
  • Human Urine
  • Dicofol