Advertisement

Mathematical systems theory

, Volume 10, Issue 1, pp 99–127 | Cite as

Design and implementation of an efficient priority queue

  • P. van Emde Boas
  • R. Kaas
  • E. Zijlstra
Article

Abstract

We present a data structure, based upon a hierarchically decomposed tree, which enables us to manipulate on-line a priority queue whose priorities are selected from the interval 1,⋯,n with a worst case processing time of\(\mathcal{O}\) (log logn) per instruction. The structure can be used to obtain a mergeable heap whose time requirements are about as good. Full details are explained based upon an implementation of the structure in a PASCAL program contained in the paper.

Keywords

Data Structure Processing Time Computational Mathematic Full Detail Time Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aho, A. V., J. E. Hopcroft andJ. D. Ullman,The design and analysis of computer Algorithms, Addison Wesley, Reading, Mass. (1974).Google Scholar
  2. [2]
    Aho, A. V., J. E. Hopcroft andJ. D. Ullman,On finding lowest common ancestors in tress, Proc. 5-th ACM symp. Theory of Computing (1973), 253–265.Google Scholar
  3. [3]
    Emde Boas, P. Van,An O (n log log n) On-Line Algorithm for the Insert-Extract Min Problem, Rep. TR 74-221 Dept. of Comp. Sci., Cornell Univ., Ithaca 14853, N.Y. Dec. 1974.Google Scholar
  4. [4]
    Even, S. andO. Kariv,Oral Commun., Berkeley, October 1975.Google Scholar
  5. [5]
    Fischer, M. J.,Efficiency of equivalence algorithms, in: R. E. Miller andJ. W. Thatcher (eds.),Complexity of Computer Computations, Plenum Press, New York (1972), 158–168.Google Scholar
  6. [6]
    Hopcroft, J. andJ. D. Ullman,Set-merging Algorithms, SIAM J. Comput. 2 (Dec. 1973), 294–303.Google Scholar
  7. [7]
    Hunt, J. W. andT. G. Szymanski,A fast algorithm for computing longest common subsequences. Manuscript. Dept. Electr. Eng. Princeton Univ. Princeton, N.J. 08540. Oct. 1975.Google Scholar
  8. [8]
    Tarjan, R. E.,Applications of path compression on balanced trees. Manuscript. Stanford Oct. 75. (Submitted toJACM).Google Scholar
  9. [9]
    Tarjan, R. E.,Efficiency of a good but non linear set union algorithm,J. Assoc. Comput. Mach. 22 (1975), 215–224.Google Scholar
  10. [10]
    Tarjan, R. E.,Edge disjoint spanning trees, dominators and depth first search, Rep. CS-74-455 (Sept. 1974), Stanford.Google Scholar
  11. [11]
    Wirth, N.,The Programming Language PASCAL (revised report), in K. Jensen and N. WirthPASCAL User Manual and Report, Lecture Notes in Computer Science 18, Springer, Berlin (1974).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • P. van Emde Boas
    • 1
  • R. Kaas
    • 1
  • E. Zijlstra
    • 2
  1. 1.Mathematical CentreAmsterdamNetherlands
  2. 2.Mathematical InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations