Mathematical systems theory

, Volume 10, Issue 1, pp 99–127 | Cite as

Design and implementation of an efficient priority queue

  • P. van Emde Boas
  • R. Kaas
  • E. Zijlstra


We present a data structure, based upon a hierarchically decomposed tree, which enables us to manipulate on-line a priority queue whose priorities are selected from the interval 1,⋯,n with a worst case processing time of\(\mathcal{O}\) (log logn) per instruction. The structure can be used to obtain a mergeable heap whose time requirements are about as good. Full details are explained based upon an implementation of the structure in a PASCAL program contained in the paper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aho, A. V., J. E. Hopcroft andJ. D. Ullman,The design and analysis of computer Algorithms, Addison Wesley, Reading, Mass. (1974).Google Scholar
  2. [2]
    Aho, A. V., J. E. Hopcroft andJ. D. Ullman,On finding lowest common ancestors in tress, Proc. 5-th ACM symp. Theory of Computing (1973), 253–265.Google Scholar
  3. [3]
    Emde Boas, P. Van,An O (n log log n) On-Line Algorithm for the Insert-Extract Min Problem, Rep. TR 74-221 Dept. of Comp. Sci., Cornell Univ., Ithaca 14853, N.Y. Dec. 1974.Google Scholar
  4. [4]
    Even, S. andO. Kariv,Oral Commun., Berkeley, October 1975.Google Scholar
  5. [5]
    Fischer, M. J.,Efficiency of equivalence algorithms, in: R. E. Miller andJ. W. Thatcher (eds.),Complexity of Computer Computations, Plenum Press, New York (1972), 158–168.Google Scholar
  6. [6]
    Hopcroft, J. andJ. D. Ullman,Set-merging Algorithms, SIAM J. Comput. 2 (Dec. 1973), 294–303.Google Scholar
  7. [7]
    Hunt, J. W. andT. G. Szymanski,A fast algorithm for computing longest common subsequences. Manuscript. Dept. Electr. Eng. Princeton Univ. Princeton, N.J. 08540. Oct. 1975.Google Scholar
  8. [8]
    Tarjan, R. E.,Applications of path compression on balanced trees. Manuscript. Stanford Oct. 75. (Submitted toJACM).Google Scholar
  9. [9]
    Tarjan, R. E.,Efficiency of a good but non linear set union algorithm,J. Assoc. Comput. Mach. 22 (1975), 215–224.Google Scholar
  10. [10]
    Tarjan, R. E.,Edge disjoint spanning trees, dominators and depth first search, Rep. CS-74-455 (Sept. 1974), Stanford.Google Scholar
  11. [11]
    Wirth, N.,The Programming Language PASCAL (revised report), in K. Jensen and N. WirthPASCAL User Manual and Report, Lecture Notes in Computer Science 18, Springer, Berlin (1974).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • P. van Emde Boas
    • 1
  • R. Kaas
    • 1
  • E. Zijlstra
    • 2
  1. 1.Mathematical CentreAmsterdamNetherlands
  2. 2.Mathematical InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations