Advertisement

Archives of Microbiology

, Volume 166, Issue 6, pp 368–371 | Cite as

Autotrophic carbon dioxide fixation inAcidianus brierleyi

  • Masaharu Ishii
  • Tsuyoshi Miyake
  • Tsuyoshi Satoh
  • Hiroshi Sugiyama
  • Yoshinori Oshima
  • Tohru Kodama
  • Yasuo Igarashi
Original Paper

Abstract

The autotrophic CO2 fixation pathway inAcidianus brierleyi, a facultatively anaerobic thermoacidophilic archaebacterium, was investigated by measuring enzymatic activities from autotrophic, mixotrophic, and heterotrophic cultures. Contrary to the published report that the reductive tricarboxylic acid cycle operates inA. brierleyi, the enzymatic activity of ATP:citrate lyase, the key enzyme of the cycle, was not detected. Instead, activities of acetyl-CoA carboxylase and propionyl-CoA carboxylase, key enzymes of the 3-hydroxypropionate cycle, were detected only whenA. brierleyi was growing autotrophically. We conclude that a modified 3-hydroxypropionate pathway operates inA. brierleyi.

Key words

Acidianus brierleyi Reductive tricarboxylic acid cycle 3-Hydroxypropionate cycle 

Abbreviations

TCA

tricarboxylic acid

BV

Benzyl viologen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antranikian G, Herzberg C, Gottschalk G (1982) Characterization of ATP citrate lyase fromChlorobium limicola. J Bacteriol 152: 1284–1287PubMedGoogle Scholar
  2. Beh M, Strauss G, Huber R, Stetter KO, Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacteriumAquifex pyrophilus and in the archaebacteriumThermoproteus neutrophilus. Arch Microbiol 160:306–311Google Scholar
  3. Brierley CL and Brierley JA (1973) A chemolithoautotrophic and thermophilic microorganism isolated from an acidic hot spring. Can J Microbiol 19:183–188PubMedGoogle Scholar
  4. Calvin M (1962) The path of carbon in photosynthesis. Science 135:879–889PubMedGoogle Scholar
  5. Clark JE, Ragsdale SW, Ljungdahl LG, Wiegel J (1982) Levels of enzymes involved in the synthesis of acetate from CO2 inClostridium thermoautotrophicum. J Bacteriol 151:507–509PubMedGoogle Scholar
  6. Ivanovsky RN, Krasilnikova EN, Fal YI (1993) A pathway of the autotrophic CO2 fixation inChloroflexus aurantiacus. Arch Microbiol 159:257–264Google Scholar
  7. Kandler O, Stetter KO (1981) Evidence for autotrophic CO2 assimilation inSulfolobus brierleyi via a reductive carboxylic acid pathway. Zentralbl Bakteriol Hyg Abt I Orig C2:111–121Google Scholar
  8. Park JT, Johnson MJ (1949) A submicrodetermination of glucose. J Biol Chem 181:149–151PubMedGoogle Scholar
  9. Pezacka E, Wood HG (1986) The autotrophic pathway of acetogenic bacteria: role of CO dehydrogenase disulfide reductase. J Biol Chem 261:1609–1615PubMedGoogle Scholar
  10. Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophicDesulfobacter hydrogenophilus. Arch Microbiol 141:198–203Google Scholar
  11. Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986)Acidianus infernus gen. nov., andAcidianus brierleyi comb nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564Google Scholar
  12. Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1982) The deficient carbohydrate metabolic pathways and the incomplete tricarboxylic acid cycle in an obligately autotrophic hydrogen-oxidizing bacterium. Agric Biol Chem 46:2341–2345Google Scholar
  13. Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1985) The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium,Hydrogenobacter thermophilus. Arch Microbiol 141: 198–203Google Scholar
  14. Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacteriumChloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 315:633–643Google Scholar
  15. Takeda Y, Suzuki F, Inoue H (1969) ATP citrate lyase (citrate-cleavage enzyme). Methods Enzymol 13:153–160Google Scholar
  16. Wood AP, Kelly DP, Norris PR (1987) Autotrophic growth of fourSulfolobus strains on tetrathionate and the effect of organic nutrients. Arch Microbiol 146:382–389Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Masaharu Ishii
    • 1
  • Tsuyoshi Miyake
    • 1
  • Tsuyoshi Satoh
    • 1
  • Hiroshi Sugiyama
    • 1
  • Yoshinori Oshima
    • 1
  • Tohru Kodama
    • 2
  • Yasuo Igarashi
    • 1
  1. 1.Department of BiotechnologyUniversity of TokyoTokyoJapan
  2. 2.Department of Textile Science and TechnologyUeda-City, NaganoJapan

Personalised recommendations