Integral Equations and Operator Theory

, Volume 2, Issue 2, pp 174–198

Operators that are points of spectral continuity

  • John B. Conway
  • Bernard B. Morrel
Article

Abstract

In this paper a characterization is obtained of those bounded operators on a Hilbert space at which the spectrum is continuous, where the spectrum is considered as a function whose domain is the set of all operators with the norm topology and whose range is the set of compact subsets of the plane with the Hausdorff metric. Similar characterizations of the points of continuity of the Weyl spectrum, the spectral radius, and the essential spectral radius are also obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Apostol, C. Foias, and D. Voiculescu, "Some results on nonquasitriangular operators", II,Rev. Roum. Math. Pures et Appl., 18 (1973), 159–181.Google Scholar
  2. 2.
    C. Apostol, C. Foias, and D. Voiculescu, "Some results on nonquasitriangular operators", III,Rev. Roum. Math. Pures et Appl., 18, (1973), 309–324.Google Scholar
  3. 3.
    C. Apostol, C. Foias, and D. Voiculescu, "Some results on nonquasitriangular operators", IV,Rev. Roum. Math. Pures et Appl., 18 (1973), 487–514.Google Scholar
  4. 4.
    C. Apostol and B. Morrel, "On uniform approximation of operators by simple models, "Indiana University Math. J., 26 (1977), 427–442.Google Scholar
  5. 5.
    N. J. Bezak and M. Eisen, "Continuity properties of operator spectra",Canad. J. Math., 29 (1977), 429–437.Google Scholar
  6. 6.
    L. G. Brown, R. G. Douglas, and P. A. Fillmore,Unitary equivalence modulo the compact operators and extensions of C * -algebras, Proc. of a Conference on Operator Theory, Halifax, Springer-Verlag Lecture Notes in Mathematics, vol. 345 (1973).Google Scholar
  7. 7.
    R. G. Douglas and C. Pearcy, "A note on quasitriangular operators",Duke Math. J., 37 (1970), 177–188.Google Scholar
  8. 8.
    R. G. Douglas and C. Pearcy,Invariant subspaces of nonquasitriangular operators, Proc. of a conference on operator theory, Springer-Verlag Lecture Notes in Mathematics, vol. 345, pp. 13–57.Google Scholar
  9. 9.
    J. Dugundji,Topology, Allyn and Bacon, Inc., Boston (1966).Google Scholar
  10. 10.
    N. Dunford and J. Schwartz,Linear operators, Part 1, Interscience, New York (1958).Google Scholar
  11. 11.
    P. A. Fillmore, J. G. Stampfli and J. P. Williams, "On the essential numerical range, the essential spectrum, and a problem of Halmos",Acta Sci. Math. (Szeged), 33 (1972), 179–192.Google Scholar
  12. 12.
    L. Gillman and M. Jerison,Rings of Continuous Functions, D. Van Nostrand Co., Inc., Princeton (1960).Google Scholar
  13. 13.
    P. R. Halmos,A Hilbert Space Problem Book, D. Van Nostrand Co., Inc., Princeton (1967).Google Scholar
  14. 14.
    P. R. Halmos and G. Lumer, "Square roots of operators, II",Proc. Amer. Math. Soc., 5 (1954), 589–595.Google Scholar
  15. 15.
    D. A. Herrero, "On multicyclic operators",Integral Eq. and Operator Theory, 1 (1978), 57–102.Google Scholar
  16. 16.
    T. Kato,Perturbation Theory for Linear Operators, Springer-Verlag, New York (1966).Google Scholar
  17. 17.
    J. S. Lancaster, "Lifting from the Calkin algebra", Indiana University Ph.D. Dissertation, 1972.Google Scholar
  18. 18.
    J. D. Newburgh, "The variation of spectra",Duke Math. J., 18 (1951), 165–176.Google Scholar
  19. 19.
    M. Schechter, "Invariance of the essential spectrum",Bull. Amer. Math. Soc., 71 (1965), 365–367.Google Scholar
  20. 20.
    J. G. Stampfli, "Compact perturbations, normal eigenvalues, and a problem of Salinas",J. London Math. Soc., 9 (1974), 165–175.Google Scholar

Copyright information

© Birkhäuser Verlag 1979

Authors and Affiliations

  • John B. Conway
    • 1
  • Bernard B. Morrel
    • 2
  1. 1.Indiana UniversityBloomingtonUSA
  2. 2.IUPUIIndianapolisUSA

Personalised recommendations