Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification of diffusing species and the dynamic nature of diffusion paths during oxidation of a dilute Ni-Cr alloy

  • 114 Accesses

  • 15 Citations

Abstract

The results of an investigation of oxidation of a Ni-1 at.% Cr alloy are presented. Photolithographic marker experiments revealed that the markers were found to reside at the interface between a predominantly columnar outer NiO layer and a very fine grain inner layer of NiO, indicating that substantial oxygen ingress had occurred through the columnar scale. New oxide growth at the metal-oxide interface requires the oxidant to be transported across the oxide layer. Since the measured diffusion rate of oxygen ions along grain boundaries and through the lattice is much too slow to account for the observed microstructural growth (∼1: 1 ratio of inner and outer layers), it is necessary to postulate that the oxidant traverses the scale along some type of short-circuit path other than grain boundaries. Extensive formation of elongated pores and pipelike channels was observed along columnar oxide grain boundaries. Thus, it appears that the transport of oxygen occurs via voids (pores) formed by vacancy coalescence at the columnar grain boundaries. These pores appear to open and close continuously. Formation of new fine-grained oxide in these pores was observed to have sometimes completely resealed the void, suggesting a dynamic nature of the voids.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Mrowec,Corros. Sci. 7, 563 (1967).

  2. 2.

    G. B. Gibbs and R. Hales,Corros. Sci. 17, 487 (1977).

  3. 3.

    G. J. Yurek and H. Schmalzried,Ber. Bunsen-Ges. Phys. Chem. 79, 255 (1975).

  4. 4.

    D. P. Moon, A. W. Harris, P. R. Chalker, and S. Mountfort,Mater. Sci. Tech. 4, 1101 (1988).

  5. 5.

    D. P. Moon,Oxid. Met. 31, 71 (1989).

  6. 6.

    A. Atkinson and D. W. Smart,J. Electrochem. Soc. 135, 2886 (1988).

  7. 7.

    A. Atkinson and R. I. Taylor,J. Phys. Chem. Solids 47, 315 (1986).

  8. 8.

    A. Atkinson and D. W. Smart, inHigh Temperature Materials Chemistry IV, Z. A. Munir, D. Cubicciotti, and H. Tagawa, eds. (The Electrochemical Society, NJ, 1987), p. 296.

  9. 9.

    A. Atkinson,Mater. Sci. Tech. 4, 1046 (1988).

  10. 10.

    10.D. P. Moon,Oxid. Met. 32, 47 (1989).

  11. 11.

    H. V. Atkinson,Mater. Sci. Tech. 4, 1052 (1988).

  12. 12.

    J. Robertson and M. I. Manning,Mater. Sci. Tech. 4, 1064 (1988).

  13. 13.

    A. G. Evans, D. Rajdev, and D. L. Douglass,Oxid. Met. 4, 151 (1972).

  14. 14.

    P. Kofstad,Oxid. Met. 24, 265 (1985).

  15. 15.

    P. Choquet and R. Mevrel,Mater. Sci. Eng. A120, 153 (1989).

  16. 16.

    C. H. Yang, G. E. Welsch, and T. E. Mitchell,Mater. Sci. Eng. 69, 351 (1985).

  17. 17.

    B. A. Pint, J. R. Martin, and L. W. Hobbs,Oxid. Met. 39, 167 (1993).

  18. 18.

    B. A. Pint and L. W. Hobbs,Oxid. Met. 41, 203 (1994).

  19. 19.

    C. K. Kim, S. K. Fan, and L. W. Hobbs,Microscopy of Oxidation, G. J. Lorimer, ed. (Institute of Metals, London, 1991), p. 374.

  20. 20.

    C. K. Kim,Oxid. Met. 45,133 (1996).

  21. 21.

    E. W. A. Young, H. E. Bishop, and J. H. De Wit,Surf. Interface Anal. 9, 163 (1986).

  22. 22.

    E. W. A. Young and J. H. W. De Wit,Solid State Ionics 16, 39 (1985).

  23. 23.

    E. W. A. Young and J. H. W. De Wit,Oxid. Met. 26, 351 (1986).

  24. 24.

    K. P. R. Reddy, J. L. Smialek, and A. R. Cooper,Oxid. Met. 17, 429 (1982).

  25. 25.

    B. L. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 209 (1989).

  26. 26.

    E. M. Fryt, G. C. Wood, F. H. Stott, and D. P. Whittle,Oxid. Met. 23, 77 (1985).

  27. 27.

    H. M. Hindam and W. W. Smeltzer,Oxid. Met. 14, 337 (1980).

  28. 28.

    C. M. Cotell, K. Przybylski, and G. J. Yurek,Fundamental Aspects of High Temperature Corrosion, D. A. Shores and G. J. Yurek, eds. (The Electrochemical Society, NJ, 1986), Vol. 2, p. 103.

  29. 29.

    T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta,Oxid. Met. 29, 445 (1988).

  30. 30.

    K. Kowalska, E. Roszczynialska, and T. Werber,Oxid. Met. 15, 399 (1981).

  31. 31.

    G. Romeo, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc., Solid State Sci. 118, 1336 (1971).

  32. 32.

    H. V. Atkinson,Oxid. Met. 28, 353 (1987).

  33. 33.

    H. V. Atkinson, A. D. LeClaire, and B. C. H. Steele,Advances in Ceramics. Vol. 23:Nonstoichiometric Compounds (The American Ceramic Society, 1987), p. 229.

  34. 34.

    L. W. Hobbs, H. T. Sawhill, and M. T. Tinker,Trans. Jpn. Inst. Met. JIMIS 3 Suppl., 115 (1983).

  35. 35.

    L. W. Hobbs, H. T. Sawhill, and M. T. Tinker,Rad. Effects 74, 229 (1983).

  36. 36.

    H. T. Sawhill, L. W. Hobbs, and M. T. Tinker,Adv. Ceram. 6, 128 (1983).

  37. 37.

    H. T. Sawhill and L. W. Hobbs, Proc. Int. Congr. on Metallic Corrosion, Toronto, 1984, Vol. 1, p. 21.

  38. 38.

    A. Atkinson, F. C. W. Pummery, and C. Monty,Transport in Nonstoichiometric Compounds, G. Simkovich and V. S. Stubican, eds. (Plenum, New York, 1985), p. 359.

  39. 39.

    A. Atkinson,Advances in Ceramics. Vol. 23:Nonstoichiometric Compounds (The American Ceramic Society, 1987), p. 3.

  40. 40.

    A. Atkinson,Rev. Mod. Phys. 57, 437 (1985).

  41. 41.

    A. Atkinson and A. E. Hughes,Philos. Mag. A43, 1071 (1981).

  42. 42.

    A. Atkinson and R. I. Taylor,Philos. Mag. A39, 581 (1979).

  43. 43.

    A. Atkinson, R. I. Taylor, and P. D. Goode,Oxid. Met. 13, 519 (1979).

  44. 44.

    C. K. Kim,Microstructural Evolution of NiO Grown on the Pure Ni and Cr Doped Substrates at High Temperature Environment, Ph.D. thesis, MIT, Cambridge, MA, 1991.

  45. 45.

    C. Dubois, C. Monty, and J. Philibert, Philos. Mag.A46, 419 (1982).

  46. 46.

    A. Rahmel, G. C. Wood, P. Kofstad, and D. L. Douglass,Oxid. Met. 23, 251 (1985).

  47. 47.

    P. Kofstad, A. Rahmel, R. A. Rapp, and D. L. Douglass,Oxid. Met. 32, 125 (1989).

  48. 48.

    J. Stringer,Corros. Sci. 10, 513 (1970).

  49. 49.

    A. G. Evans and R. M. Cannon,Mater. Sci. Forum 43, 243 (1989).

  50. 50.

    C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham,J. Electrochem. Soc. 134, 1871 (1987).

  51. 51.

    C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham,Oxid. Met. 34, 173 (1990).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, C.K., Hobbs, L.W. Identification of diffusing species and the dynamic nature of diffusion paths during oxidation of a dilute Ni-Cr alloy. Oxid Met 47, 69–89 (1997). https://doi.org/10.1007/BF01682372

Download citation

Key words

  • duplex-layer formation
  • dynamic oxygen-diffusion path
  • Ni-Cr alloy
  • oxidation