Ukrainian Mathematical Journal

, Volume 34, Issue 3, pp 307–310 | Cite as

Classification of stationary stochastic processes

  • Yu. G. Kuritsyn
  • Yu. I. Petunin
Brief Communications


Stochastic Process Stationary Stochastic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    U. Grenander, Stochastic Processes and Statistical Inference, Ark. Mat., E1 (1950).Google Scholar
  2. 2.
    Yu. G. Kuritsyn, “On the variance of the best linear unbiased estimate of the mean of a stochastic process,” Tr. Mat. Fak. Voronezh Univ., No. 3, 20–22 (1972).Google Scholar
  3. 3.
    I. A. Ibragimov and Yu. A. Rozanov, Gaussian Stochastic Processes [in Russian], Fizmatgiz, Moscow (1970).Google Scholar
  4. 4.
    N. I. Akhiezer, Classical Moment Problem and some Related Questions in Analysis, Pergamon (1965).Google Scholar
  5. 5.
    G. Szegö, “Orthogonal polynomials,” Math. Z. (1919).Google Scholar
  6. 6.
    J. Hajek, “Linear estimate of mean of stationary stochastic process with convex correlation function,” Czech. Mat. Zh.,6, 94–117 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Yu. G. Kuritsyn
    • 1
    • 2
  • Yu. I. Petunin
    • 1
    • 2
  1. 1.Voronezh State UniversityUSSR
  2. 2.Kiev State UniversityUSSR

Personalised recommendations