Ukrainian Mathematical Journal

, Volume 34, Issue 3, pp 246–251 | Cite as

Approximation by polynomials of continuous solutions of a boundary problem

  • A. P. Makhmudov
  • A. Musaev


Boundary Problem Continuous Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. V. Bitsadze and A. A. Samarskii, “Some simplest generalizations of linear elliptic boundary problems,” Dokl. Akad. Nauk SSSR,185, No. 4, 839–840 (1969).Google Scholar
  2. 2.
    V. K. Dzyadyk, “Application of linear methods to the approximation by polynomials of solutions of ordinary differential equations and integral equations of Hammerstein,” Izv. Akad. Nauk SSSR,34, 827–848 (1970).Google Scholar
  3. 3.
    E. Hilb, “Zur Theorie ofer suturclungen willkürlicher Funktion nach eigen Funktionen,” Math. Z.,1, 58–69 (1918).Google Scholar
  4. 4.
    M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, et al., Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1969).Google Scholar
  5. 5.
    I. N. Kurbanov, “A boundary problem,” Uch. Zap. M-va Vyssh. Sred. Spets. Obrazov. AzSSR. Ser. Fiz.-Mat. Nauk, No. 4, 24–28 (1977).Google Scholar
  6. 6.
    A. P. Makhmudov and V. M. Musaev, “Theory of solutions of nonlinear integral equations of Volterra-Uryson type,” Dokl. Akad. Nauk AzSSR,25, No. 5, No. 5, 3–6 (1968).Google Scholar
  7. 7.
    A. P. Makhmudov, “Application of the method of polynomial operators to the approximation of solutions of the Ballistic problem of Niklibork,” Ukr. Mat. Zh.,27, No. 3, 337–347 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • A. P. Makhmudov
    • 1
    • 2
  • A. Musaev
    • 1
    • 2
  1. 1.Azerbaidzhan State UniversityUSSR
  2. 2.Samarkand State UniversityUSSR

Personalised recommendations