A unique geometry of the active site of angiotensin-converting enzyme consistent with structure-activity studies

  • Dorica Mayer
  • Christopher B. Naylor
  • Ioan Motoc
  • Garland R. Marshall
Research Papers

Summary

Previous structure-activity studies of captopril and related active angiotensin-converting enzyme (ACE) inhibitors have led to the conclusion that the basic structural requirements for inhibition of ACE involve (a) a terminal carboxyl group; (b) an amido carbonyl group; and (c) different types of effective zinc (Zn) ligand functional groups. Such structural requirements common to a set of compounds acting at the same receptor have been used to define a pharmacophoric pattern of atoms or groups of atoms mutually oriented in space that is necessary for ACE inhibition from a stereochemical point of view. A unique pharmacophore model (within the resolution of approximately 0.15 Å) was observed using a method for systematic search of the conformational hyperspace available to the 28 structurally different molecules under study. The method does not assume a common molecular framework, and, therefore, allows comparison of different compounds that is independent of their absolute orientation.

Consequently, by placing the carboxyl binding group, the binding site for amido carbonyl, and the Zn atom site in positions determined by ideal binding geometry with the inhibitors' functional groups, it was possible to clearly specify a geometry for the active site of ACE.

Key words

Pharmacophore Metallopeptidase Captopril Molecular mechanics Systematic search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkochler, R.A. and Dunn, D.A., In Olson, E.C. and Christoffersen, R.E. (Eds) Computer-assisted Drug Design, Washington, DC, ACS Symposium 112, 1979, pp. 205–226.Google Scholar
  2. 2.
    Marshall, G.R. and Motoc, I., In Burgen, A.S.V., Roberts, G.C.K. and Tute, M.S. (Eds) Molecular Graphics and Drug Design, Elsevier, Amsterdam, 1986, pp. 115–156.Google Scholar
  3. 3.
    Hartsuck, J.A. and Lipscomb, W.N., In Boyer, P.D. (Ed) The Enzymes, Academic Press, New York, 1971, Vol 3 pp. 1–56.Google Scholar
  4. 4.
    Schmid, M.E. and Herriott, J.R., J. Mol. Biol. 103 (1976) pp. 175–190.PubMedGoogle Scholar
  5. 5.
    Matthews, B.W., Weaver, L.H. and Kestov, W.R., J. Biol. Chem., 249 (1974) 8030–8044.PubMedGoogle Scholar
  6. 6.
    Cushman, D.W. and Cheung, H.S., Biochem. Pharmacol., 20 (1971) 1637–1648.Google Scholar
  7. 7.
    Cushman, D.W. and Ondetti, M.A., Prog. Med. Chem., 17 (1980) 41–104.PubMedGoogle Scholar
  8. 8.
    Ondetti, M.A., Williams, N.J., Sabo, E.F., Pluscec, J., Weaver, E.R. and Kocy, O., Biochemistry, 10 (1971) 4033–4039.PubMedGoogle Scholar
  9. 9.
    Cushman, D.W., Cheung, H.S., Sabo, E.F. and Ondetti, M.A., Biochemistry, 16 (1977) 5484–5491.PubMedGoogle Scholar
  10. 10.
    Ondetti, M.A., Rubin, B. and Cushman, D.W., Science, 196 (1977) 441–444.PubMedGoogle Scholar
  11. 11.
    Suh, J.T., Skiles, J.W., Williams, B.E. and Schwab, A., U.S. Patents 4, 256, 761 and 4, 304, 771, 1981.Google Scholar
  12. 12.
    Hassall, C.H., Krohn, A., Moody, C.J. and Thomas, W.A., FEBS Lett., 147 (1982) 175–179.PubMedGoogle Scholar
  13. 13.
    Bravo, E.L. and Tarazi, R.C., Hypertension, 1 (1979) 39–46.PubMedGoogle Scholar
  14. 14.
    Ondetti, M.A. and Cushman, D.W., Crit. Rev. Biochem., 16 (1984) 381–411.Google Scholar
  15. 15.
    McEvoy, F.J., Lai, F.M. and Albright, J.D., J. Med. Chem., 26 (1983) 381–393.PubMedGoogle Scholar
  16. 16.
    Thorsett, E.D., Harris, E.E., Aster S., Peterson, E.R., Taub, D. and Patchett, A.A., Biochem. Biophys. Res. Commun., 111 (1983) 166–171.PubMedGoogle Scholar
  17. 17.
    Krohn, A., In Emmet, J.C. (Ed) Second SCI-RSC Medicinal Chem. Symp., 1984, pp. 109–123.Google Scholar
  18. 18.
    Hassall, C.H., Krohn, A., Moody, C.J. and Thomas, W.A., J. Chem. Soc. Perkin Trans., 1 (1984) 155–164.Google Scholar
  19. 19.
    Galardy, R.E., Biochemistry, 21 (1982) 5777–5781.PubMedGoogle Scholar
  20. 20.
    Ciabatti, R., Padova, G., Bellasio, E., Tarzia, G., Depaoli, A., Battaglia, F., Cellentani, M., Barone, D. and Baldoli, E., J. Med. Chem., 29 (1986) 411–417.PubMedGoogle Scholar
  21. 21.
    Kim, D.H., Guinosso, C.J., Buzby, G.C. Jr., Herbst, D.R., McCaully, R.J., Wicks, T.C. and Wendt, R.L., J. Med. Chem., 26 (1983) 394–403.PubMedGoogle Scholar
  22. 22.
    Wyvratt, M.J., Tischler, M.H., Ikeler, T.J., Springer, J.P., Tristram, E.W. and Patchett, A.A., In Hruby, V.J. and Rich, D.H. (Eds) Peptides: Structure and Function. Proc. 8th Am. Peptide Symp., Pierce Chemical Company, Rockford, Illinois, 1983, pp 551–554.Google Scholar
  23. 23.
    Greenlee, W.J., Allibone, P.L., Perlow, D.S., Patchett, A.A., Ulm, E.H. and Vassil, T.C., J. Med. Chem., 28 (1985) 434–442.PubMedGoogle Scholar
  24. 24.
    Galardy, R.E., Kontoyiannidou-Ostrem, V. and Kortylewicz, Z.P., Biochemistry, 22 (1983) 1990–1995.PubMedGoogle Scholar
  25. 25.
    Gruenfeld, N., Stanton, J.L., Yuan, A.M., Ebetino, F.H., Browne, L.J., Gude, C and Huebner, C.F., J. Med. Chem., 26 (1983) 1277–1282.PubMedGoogle Scholar
  26. 26.
    Skiles, J.W., Suh, J.T., Williams, B.E., Menard, P.R., Barton, J.N., Jones, H., Neiss, E.S., Schwab, A., Mann, W.S., Khandwala, A., Wolf, P.S., and Weinryb, I., J. Med. Chem., 29, (1986) 784–796.PubMedGoogle Scholar
  27. 27.
    Petrillo, E.W., Jr. and Ondetti, M.A., Med. Res. Rev., 2 (1982) 1–41.PubMedGoogle Scholar
  28. 28.
    Andrews, P.R., Carson, J.M., Caselli, A., Spark, M.J. and Woods, R., J. Med. Chem., 28 (1985) 393–399.PubMedGoogle Scholar
  29. 29.
    Thorsett, E.D., Harris, E.E., Aster, S.D., Peterson, E.R., Snyder, J.P., Springer, J.P., Hirshfield, J., Tristram, E.W., Patchett, A.A., Ulm, E.H. and Vassil, T.C., J. Med. Chem., 29 (1986) 251–260.PubMedGoogle Scholar
  30. 30.
    Galardy, R.E. and Grobelny, D., J. Med. Chem., 28 (1985) 1422–1427.PubMedGoogle Scholar
  31. 31.
    Wyvratt, M.J. and Patchett, A.A., Med. Res. Rev., 5 (1985) 483–531.PubMedGoogle Scholar
  32. 32.
    Patchett, A.A., Harris, E., Tristram, E.W., Wyvratt, M.J., Wu, M.T., Taub, D., Peterson, E.R., Ikeler, T.J., ten Broeke, J., Payne, L.G., Ondeyka, D.L., Thorsett, E.D., Greenlee, W.J., Lohr, N.S., Hoffsommer, R.D., Joshua, H., Ruyle, W.V., Rothrock, J.W., Aster, S.D., Maycock, A.L., Robinson, F.M., Hirschmann, R., Sweet, C.S., Ulm, E.H., Gross, D.M., Vassil, T.C. and Stone C.A., Nature, 288 (1980) 280–283.PubMedGoogle Scholar
  33. 33.
    Kennard, O. and Watson, D.G., (Eds) Molecular Structures and Dimensions, Vol. 3, Bibliography 1969–1971, Organic and Organometallic Crystal Structures, N.V.A. Oosthoek's Uitgevers Mij. Utrecht, 1971.Google Scholar
  34. 34.
    SYBYL. Molecular modeling system. Tripos Associates, St. Louis, Missouri.Google Scholar
  35. 35.
    Klyne, W. and Prelog, V., Experientia, 16 (1960) 521–523.Google Scholar
  36. 36.
    Motoc, I., Dammkoehler, R.A. and Marshall, G.R., In Trinajstic, N. (Ed) Mathematical and Computational Concepts in Chemistry, Ellis Horwood Ltd., Chichester, 1986, pp. 222–251.Google Scholar
  37. 37.
    Motoc, I., Dammkoehler, R.A., Mayer, D. and Labanowski, J., Quant. Struct.-Act. Relat., 5 (1986) 99–105.Google Scholar
  38. 38.
    Labanowski, J., Motoc, I., Naylor, C.B., Mayer, D. and Dammkoehler, R.A., Quant. Struct.-Act. Relat., 5 (1986) 138–152.Google Scholar
  39. 39.
    Roques, B.P., Lucas-Soroca, E., Chaillet, P., Costentin, J. and Fournie-Zaluski, M.C., Proc. Natl. Acad. Sci. U.S.A., 80 (1983) 3178–3182.PubMedGoogle Scholar
  40. 40.
    Condon, M.E., Petrillo E.W., Jr., Ryono, D.E., Reid, J.A., Neubeck, R., Puar, M., Heikes, J.E., Sabo, E.F., Losee, K.A., Cushman, D.W. and Ondetii, M.A., J. Med. Chem. 25 (1982) 250–258.PubMedGoogle Scholar

Copyright information

© ESCOM Science Publishers B.V. 1987

Authors and Affiliations

  • Dorica Mayer
    • 1
  • Christopher B. Naylor
    • 1
  • Ioan Motoc
    • 2
  • Garland R. Marshall
    • 1
  1. 1.Department of PharmacologyWashington University School of MedicineSt. LouisU.S.A.
  2. 2.Department of Computer ScienceWashington UniversitySt. LouisU.S.A.

Personalised recommendations