Zeitschrift für Physik

, Volume 270, Issue 4, pp 289–293 | Cite as

On diamagnetism and non-dissipative transport

  • M. Heuser
  • J. Hajdu
Article

Abstract

The states of free electrons in a magnetic field confined to a box of finite volume are determined and used to calculate the average magnetic moment and the non-dissipative electric and heat current in an unambiguous way. It is shown that for infinite volume the average magnetic moment coincides with the magnetization calculated by Landau. Similarly, for infinite volume, the non-dissipative transport coefficients coincide with those calculated by Zyryanov and Silin who use Landau's method and subtract the purely diamagnetic parts from the total currents. We think that our considerations give an answer to the often discussed question, why the Landau calculation of the magnetization and similar calculations of the non-dissipative transport coefficients are correct for a large system.

Keywords

Magnetic Field Elementary Particle Free Electron Finite Volume Similar Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landau, L.: Z. Physik64, 629 (1930)Google Scholar
  2. 2.
    Teller, E.: Z. Physik67, 311 (1931)Google Scholar
  3. 3.
    Kubo, R.: J. Phys. Soc. Japan19, 2127 (1964)Google Scholar
  4. 4.
    Ohtaka, K., Moriya, T.: J. Phys. Soc. Japan34, 1203 (1973)Google Scholar
  5. 5.
    Heuser, M.: Diplomarbeit, Köln 1972Google Scholar
  6. 6.
    Zyryanov, P.S., Silin, V. P.: Sov. Phys. JETP,19, 366 (1964); Fiz. Metal. Metalloved,16, 798 (1963)Google Scholar
  7. 7.
    Zyryanov, P. S., Silin, V. P.: Fiz. Metal. Metalloved,17, 934 (1964)Google Scholar
  8. 8.
    Zyryanov, P.S., Kalashinkov, V. P.: Fiz. Metal. Metalloved,18, 166 (1964)Google Scholar
  9. 9.
    Obraztsov, Yu. N.: Sov. Phys. Solid State6, 331 (1964)Google Scholar
  10. 10.
    Obraztsov, Yu. N.: Sov. Phys. Solid State7, 455 (1965)Google Scholar
  11. 11.
    Anselm, A.I., Obraztsov, Yu. N., Tarkhanyan, R.G.: Sov. Phys. Solid State7, 2293 (1966)Google Scholar
  12. 12.
    Zyryanov, P.S.: Sov. Phys. Solid State6, 2853 (1965)Google Scholar
  13. 13.
    Zyryanov, P.S., Okulov, V.I.: Sov. Phys. Solid State7, 1411 (1965)Google Scholar
  14. 14.
    Okulov, V.I.: Sov. Phys. Solid State8, 1915 (1967)Google Scholar
  15. 15.
    Bar'yakhtar, V.G., Peletminskii, S.V.: Sov. Phys. JETP21, 126 (1965)Google Scholar
  16. 16.
    Peletminskii, S.V., Bar'yakhtar, V.G.: Sov. Phys. Solid State7, 356 (1965)Google Scholar
  17. 17.
    Peletminskii, S.V.: Sov. Phys. Solid State7, 2157 (1966)Google Scholar
  18. 18.
    Zyryanov, P.S., Silin, V.P.: Sov. Phys. Solid State8, 503 (1966)Google Scholar
  19. 19.
    Obraztsov, Yu. N.: Sov. Phys. Solid State8, 506 (1966)Google Scholar
  20. 20.
    Herring, C.: J. Phys. Soc. Japan21, Supplement VI (1966) (Proc. Int. Conf. Phys. Semicond. Kyoto, 1966)Google Scholar
  21. 21.
    Zyryanov, P.S., Guseva, G.I.: Sov. Phys. Uspekhi11, 538 (1969)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • M. Heuser
    • 1
  • J. Hajdu
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnFederal Republic of Germany

Personalised recommendations