Mathematische Annalen

, Volume 245, Issue 3, pp 255–272 | Cite as

Biholomorphic mappings between certain real analytic domains in ℂ2

  • Klas Diederich
  • John Erik Fornæss
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, H.: Proper holomorphic maps in ℂn. Indiana Univ. Math. J.26, 137–146 (1977)Google Scholar
  2. 2.
    Bedford, E., Fornæss, J.E.: Local extension of CR-functions from weakly pseudoconvex boundaries. Mich. Math. J.25, 259–262 (1978)Google Scholar
  3. 3.
    Bedford, E., Fornæss, J.E.: Biholomorphic maps of weakly pseudoconvex domains. Duke Math. J.45, 711–719 (1978)Google Scholar
  4. 4.
    Diederich, K., Fornæss, J.E.: Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions. Invent. Math.39, 129–141 (1977)Google Scholar
  5. 5.
    Diederich, K., Fornæss, J.E.: Pseudoconvex domains with real-analytic boundary. Ann. Math.107, 371–384 (1978)Google Scholar
  6. 6.
    Diederich, K., Fornæss, J.E.: Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary. Ann. Math. (to appear)Google Scholar
  7. 7.
    Diederich, K., Fornæss, J.E.: Biholomorphic maps between Hartogs-domains in ℂ2 with real-analytic boundaries. Preprint (1979)Google Scholar
  8. 8.
    Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math.26, 1–65 (1974)Google Scholar
  9. 9.
    Fornæss, J.E.: Biholomorphic mappings between weakly pseudoconvex domains. Pac. J. Math.74, 63–65 (1978)Google Scholar
  10. 10.
    Henkin, G.M.: An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain. Dokl. Akad. Nauk SSSR210, 1026–1029 (1973); Soviet Math. Dokl.14, 858–862 (1973)Google Scholar
  11. 11.
    Kaup, W.: Über das Randverhalten von holomorphen Automorphismen beschränkter Gebiete. Manuscripta Math.3, 257–270 (1970)Google Scholar
  12. 12.
    Lewy, H.: On the boundary behavior of holomorphic mappings. Acad. Naz. Lincei35 (1977)Google Scholar
  13. 13.
    Lojasiewicz, S.: Sur le problème de la division. Studia Math.18, 87–136 (1959)Google Scholar
  14. 14.
    Margulis, G.A.: All-union conference on the theory of functions. Har'kov p. 137 (1971)Google Scholar
  15. 15.
    Naruki, I.: On extendability of isomorphisms of Cartan connections and biholomorphic mappings of bounded domains. Tôhoku Math. J.28, 117–122 (1976)Google Scholar
  16. 16.
    Nirenberg, L., Webster, S., Yang, P.: Local boundary regularity of holomorphic mappings. Preprint (1979)Google Scholar
  17. 17.
    Pinčuk, S.: On proper holomorphic mappings of strictly pseudoconvex domains. Siberian Math. J.15, 644–649 (1975)Google Scholar
  18. 18.
    Pinčuk, S.: On the analytic continuation of holomorphic mappings. Math. USSR Sbornik27, 373–392 (1975); Math. Sbornik98, 416–435 (1975)Google Scholar
  19. 19.
    Pinčuk, S.: Proper holomorphic mappings between strongly pseudoconvex domains (Russian). Dokl. Akad. Nauk SSSR241, 30–33 (1978)Google Scholar
  20. 20.
    Range, R.M.: The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains. Pac. J. Math.78, 173–189 (1978)Google Scholar
  21. 21.
    Vormoor, N.: Topologische Fortsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng-pseudokonvexen Gebieten im ℂn mitC -Rand. Math. Ann.204, 239–261 (1973)Google Scholar
  22. 22.
    Webster, S.: On the mapping problem for algebraic real hypersurfaces. Invent. Math.43, 53–68 (1977)Google Scholar
  23. 23.
    Webster, S.: On the reflection principle in several complex variables. Proc. AMS71, 26–28 (1978)Google Scholar
  24. 24.
    Webster, S.: Biholomorphic mappings and the Bergman kernel off the diagonal. Invent. Math.51, 155–169 (1979)Google Scholar
  25. 25.
    Yang, P.: Holomorphic curves and boundary regularity of biholomorphic maps of pseudoconvex domains. Preprint (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Klas Diederich
    • 1
  • John Erik Fornæss
    • 1
  1. 1.Princeton UniversityPrincetonUSA

Personalised recommendations