Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Norm estimates in besov and Lizorkin-Triebel spaces for the solutions of second-order linear hyperbolic equations

  • 111 Accesses

  • 12 Citations


In the paper one considers the nonhomogeneous hyperbolic equation

$$\partial _t^2 u + iB\left( t \right)\partial _t u + A\left( t \right)u = h$$

on\(\left[ {0, T} \right] \times \mathfrak{M}\), where\(\mathfrak{M}\)=R n or\(\mathfrak{M}\) is a smooth closed manifold, A(t) and B(t) are pseudodifferential operators on\(\mathfrak{M}\), depending on t ε [0, T], of orders 2 and 1, respectively. For the solutions of equation (1) for small t one establishes estimates of the form

With arbitrary r εR and integer ℓ≥0, where for G:,. and E:,. one can take the Besov space B:,.\(\left( \mathfrak{M} \right)\) or the Lizorkin-Triebet space F:,.\(\left( \mathfrak{M} \right)\), depending on the values n, v, p, q1 q2, and the “Brenner number” m, which are determined from the principal symbols of the operators A(0) and B(0); also the actual form of the scalar function σv,p, n (t) depends on n, v, p, q1 q2, and m: it may be power-like ∣t∣v−n+2n/p, or logarithmic ¦log¦t¦∥, or a constant. In addition, one obtains estimates of the form

characterizing the integrability properties over timespace and the smoothing (for t>0) of the solutions of equation (1).

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    W. A. Strauss, “On weak solutions of semilinear hyperbolic equations,” An. Acad. Brasil. Ciênc.,42, No. 4, 645–651 (1970).

  2. 2.

    J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Gauthier-Villars, Paris (1969).

  3. 3.

    O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York (1985).

  4. 4.

    J. Ginibre and G. Velo, “The global Cauchy problem for the non linear Klein-Gordon equation,” Math. Z.,189, No. 4, 487–505 (1985).

  5. 5.

    J. Ginibre and G. Velo, “The global Cauchy problem for the non linear Klein-Gordon equation. II,” Ann. Inst. H. Poincaré Anal. Non Linéaire,6, No. 1, 15–35 (1989).

  6. 6.

    L. V. Kapitanskii, “The Cauchy problem for a semilinear equation. I,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,163, 76–104 (1987).

  7. 7.

    H. Pecher, “Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I,” Math. Z.,150, No. 2, 159–183 (1976).

  8. 8.

    Ph. Brenner and W. von Wahl, “Global classical solutions of nonlinear wave equations,” Math. Z.,176, No. 2, 87–121 (1981).

  9. 9.

    R. S. Strichartz, “Convolutions with kernels having singularities on a sphere,” Trans. Amer. Math. Soc.,148, No. 2, 461–471 (1970).

  10. 10.

    R. S. Strichartz, “A priori estimates for the wave equation and some applications,” J. Funct. Anal.,5, No. 2, 218–235 (1970).

  11. 11.

    Ph. Brenner, “On Lp-Lp′, estimates for the wave-equation,” Math. Z.,145, No. 3, 251–254 (1975).

  12. 12.

    Ph. Brenner, “Lp-Lp′-estimates for Fourier integral operators related to hyperbolic equations,” Math. Z.,152, 273–286 (1977).

  13. 13.

    Ph. Brenner, “On the existence of global smooth solutions of certain semilinear hyperbolic equations,” Math. Z.,167, 99–135 (1979).

  14. 14.

    L. V. Kapitanskii, “Some generalizations of the Strichartz-Brenner inequality,” Algebra Analiz,1, No. 3, 127–159(1989).

  15. 15.

    H. Triebel, Theory of Function Spaces, Birkhäuser, Basel (1983).

  16. 16.

    S. G. Krein and Yu. I. Petunin, “Scales of Banach spaces,” Usp. Mat. Nauk,21, No. 2, 89–168 (1966).

  17. 17.

    L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Springer, Berlin (1985).

  18. 18.

    O. A. Oleinik and E. V. Radkevich, Second Order Equations with nonnegative Characteristic Form, Am. Math. Soc., Providence (1973).

  19. 19.

    J. Marschall, “Some remarks on Triebel spaces,” Studia Math.,87, No. 1, 79–92 (1987).

  20. 20.

    J. Marschall, “Pseudodifferential operators with nonregular symbols of the classs ℓ, δ m ,” Comm. Partial Differential Equations,12, No. 8, 921–965 (1987).

  21. 21.

    B. Marshall, W. Strauss, and S. Wainger, “ Lp−Lq -estimates for the Klein-Gordon equation,” J. Math. Pures Appl.,59, No. 4, 417–440 (1980).

Download references

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akad. Nauk SSSR, Vol. 171, pp. 106–162, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kapitanskii, L.V. Norm estimates in besov and Lizorkin-Triebel spaces for the solutions of second-order linear hyperbolic equations. J Math Sci 56, 2348–2389 (1991). https://doi.org/10.1007/BF01671936

Download citation


  • Hyperbolic Equation
  • Linear Hyperbolic Equation