Advertisement

Selecta Mathematica

, Volume 1, Issue 2, pp 265–323 | Cite as

Hyperbolic exterior differential systems and their conservation laws, part II

  • R. Bryant
  • P. Griffiths
  • L. Hsu
Article

Keywords

Differential System Exterior Differential System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AK]
    I. Anderson and N. Kamran.The variational bicomplex for second order partial differential equations in the plane I: generalized Laplace invariants and their applications. preprint, Fall 1993.Google Scholar
  2. [BCG3]
    R. Bryant, S.-S. Chern, R. Gardner, H. Goldschmidt, and P. Griffiths.Exterior differential systems. Mathematical Sciences Research Institute Publications #18, Springer-Verlag (1991).Google Scholar
  3. [BG1]
    R. Bryant and P. Griffiths.Characteristic cohomology of differential systems (I): General theory. IAS preprint (1993).Google Scholar
  4. [BG2]
    R. Bryant and P. Griffiths.Characteristic cohomology of differential systems (II): Conservation Laws for a Class of Parabolic Equations. IAS preprint (1993).Google Scholar
  5. [CH]
    R. Courant and D. Hilbert.Methods of Mathematical Physics, Volume I. Interscience, New York (1953),Volume II, Interscience, New York (1962).Google Scholar
  6. [Da]
    G. Darboux.Leçons sur la théorie general des surfaces, Tome II. Hermann, Paris (1915).Google Scholar
  7. [FX]
    Ph. Le Floch and Z. Xin.Uniqueness via the adjoint problems for systems of conservation laws. Comm. Pure and Applied Math.,46 (1993), 1499–1533.Google Scholar
  8. [Go]
    E. Goursat.Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, Tome 1. Hermann, Paris (1896),Tome 2, Hermann, Paris (1898).Google Scholar
  9. [Ka]
    K. Kakié.A fundamental property of Monge characteristics in involutive systems of non-linear partial differential equations and its application. Math. Ann.,273 (1985), 89–114.Google Scholar
  10. [La]
    P. Lax.Development of Singularities of Solutions of Nonlinear Hyperbolic Partial Differential Equations. J. Math. Phys.,5 (1964), 611–613.Google Scholar
  11. [Li]
    S. Lie.Diskussion der Differential Gleichung s=F(z). Arc. Math.,6 (1881), 112–124.Google Scholar
  12. [Ya]
    D. Yang.Involutive hyperbolic differential systems. Memoirs of the American Math. Society68, no. 370, (1987).Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • R. Bryant
    • 1
  • P. Griffiths
    • 2
  • L. Hsu
    • 3
  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Institute for Advanced StudyPrincetonUSA
  3. 3.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations