Advertisement

Oxidation of Metals

, Volume 48, Issue 3–4, pp 347–356 | Cite as

High-temperature oxidation of Fe-Cr alloys in wet oxygen

  • Shen Jianian
  • Zhou Longjiang
  • Li Tiefan
Article

Abstract

Fe-Cr binary alloys have been oxidized in a stream of oxygen containing different amounts of water vapor at 900–1000°C to study the effects of water vapor. The Fe-Cr alloys exhibit an initial protective behavior due to formation of a Cr-rich scale and followed by a nonprotective breakaway oxidation due to formation of iron-rich scale. The appearance of the breakaway oxidation was very sensitive to the water vapor content in the atmosphere. The higher the water vapor content, the earlier the breakaway oxidation takes place. Increasing the oxidizing temperature or decreasing the Cr content in the alloys facilitate an earlier breakaway oxidation. The breakaway oxidation was inhibited effectively by surface-applied CeO2 particles before oxidation. The oxide scales were examined and analyzed by optical metallography, X-ray diffraction, SEM, and EPMA. A mechanism of the effects of water vapor has been proposed.

Key Words

water vapor Fe-Cr alloys breakaway oxidation mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kofstad,High-Temperature Corrosion (Elsevier Applied Science, London, 1988), p. 382.Google Scholar
  2. 2.
    I. Kvernes, M. Oliveria, and P. Kofstad,Corros. Sci. 17, 273 (1977).Google Scholar
  3. 3.
    C. T. Fujii and R. A. Meussner,J. Electrochem. Soc. 111, 1215 (1964).Google Scholar
  4. 4.
    E. A. Gulbransen and T. P. Copen,Nature (London),186, 959 (1960).Google Scholar
  5. 5.
    R. A. Rapp,Metall. Trans. A15, 765 (1984).Google Scholar
  6. 6.
    A. S. Khanna and P. Kofstad,Proc. Ilth Inter. Corros. Congress, Florence, Italy, April 26,4, 45 (1990).Google Scholar
  7. 7.
    P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London, 1988), p. 257.Google Scholar
  8. 8.
    P. Kofstad,Oxid. Met. 24, 265 (1985).Google Scholar
  9. 9.
    D. L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood,Oxid. Met. 45, 529 (1996).Google Scholar
  10. 10.
    R. Hussey, P. Papaiacovou, and J. Shen,Mater. Sci. Eng. A120, 147 (1989).Google Scholar
  11. 11.
    J. Shen, T. Li, and L. Zhou,Corros. Sci. Prot. Technol. 4, 289 (1992).Google Scholar
  12. 12.
    M. J. Bennett and A. T. Tuson,Mater. Sci. Eng. A116, 79 (1989).Google Scholar
  13. 13.
    J. R. Nicholls and P. Hancock, inThe Reactive-Element Effect, E. Lang, ed. (Amsterdam, Elsevier, 1989), p. 195.Google Scholar
  14. 14.
    H. Jin, M. Li, T. Li, and J. Shen,J. Chin. Soc. Corros. Prot. (to be published).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Shen Jianian
    • 1
  • Zhou Longjiang
    • 1
  • Li Tiefan
    • 1
  1. 1.State Key Lab for Corrosion Science, Institute of Corrosion and Protection of MetalsAcademia SinicaShenyangChina

Personalised recommendations