Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

4- and 5-nitroindane

  • 97 Accesses

  • 2 Citations


Mononitration of indane produces a mixture of 4- and 5- nitroindanes. Crystallization from mixtures occurs after distillation improves composition of a major component to above 80%. 4-Nitroindane: triclinic, space group\(P\bar 1\) (#2),a=7.332(4) Å,b=8.304(4) Å,c=8.358(4) Å, α=61.43(4)°, β=67.60(4)°, γ=70.15(4)°,V=405.4(4) Å3,Z=2. Non-H-atoms are nearly planar, aliphatic H's are eclipsed. 5-Nitroindane: monoclinic, space groupP21/c (#14),a=10.946(8) Å,b=15.643(10) Å,c=9.415(6) Å, β=92.34(5)°,V=1611(2) Å3,Z=8. Non-H-atoms in the two molecules differ in torsion of the nitro group with respect to indane and fold of the nonbenzylic methylene group. Semiempirical calculations (PM3) suggest that distorsion from planarity may be associated with the two lowest energy vibrational modes. Uv, ir, ms, proton, and13C-nmr spectra are correlated with the solid state structures.

This is a preview of subscription content, log in to check access.


  1. 1.

    Lindner, J.; Bruhin, J.Berichte 1927,60B, 435.

  2. 2.

    Galceran, M.T.; Moyano, J.,J. Chromatog. 1992,607, 287.

  3. 3.

    Liu, T.-Y.; Robbat, A.;J. Chromatog. 1991;539, 1.

  4. 4.

    McKinney, T.M.; Geske, D.H..J. Amer. Chem. Soc. 1967,89, 2806.

  5. 5.

    Pailer, M.; Grünhaus, H.Monatscheft für Chemie 1974,105, 1362.

  6. 6.

    Tuominen, J. Wickstrom, K.; Pyysalo, H.J. High. Resol. Chromatog. Chromatog. Commun. 1986,10633, 469.

  7. 7.

    HYPERCHEM for Windows, Hypercube, Inc. Waterloo, Ontario, Canada, © 1994.

  8. 8.

    Allinger, N.L.J. Amer. Chem. Soc. 1977,99, 8127; and Allinger, N.L. “QCPE395-MM2,” Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN.

  9. 9.

    Stewart, J.J.P.;J. Comput. Chem. 1991,12, 320, and Stewart, J.J.P., “QCPE #506,” Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN.

  10. 10.

    Varsanyi, G., Molnar-Paal, E., Kosa, K.; Keresztury, G.;Acta Chim. Acad. Sci. Hung. 1979,100, 481; and Suranarayana, V., Kumar, A.P., Rao, G.R.: Pandey, G.C.Spectrochim Acta.1992,48a, 1481.

  11. 11.

    Korseniewski, C.; Kowalchyk, C.;J. Phys. Chem. 1991,95, 68.

  12. 12.

    Schatz, P.; Reich, H.J. RACCOON. Program for simulation and analysis of multispin proton magnetic Resonance spectra, University of Wisconsin. Madison, WI1993.

  13. 13.

    Levy, G.C.; Nelson, G.L.Carbon-13 Nuclear Magnetic Resonance for Organic Chemists; Wiley-Interscience. New York,1972.

  14. 14.

    Burgi, H.-B.; Dunitz, J.D.Structure Correlation, Volume 2; VCH Publishers: New York,1994, Appendix A.

  15. 15.

    De Ridder D.J.A.; Schenk, H.Acta Crystallogr. 1994,B50, 724.

  16. 16.

    Sheldrick, G. Programs for solution and refinement of crystal and molecular structures from X-ray diffraction data. SHELXS-86.Acta Crystallogr 1990,A46, 467.

  17. 17.

    Sheldrick G. (SHELXL-93):Crystallographic Computing; Oxford University Press; Oxford, UK,1992.

  18. 18.

    International Tables for X-Ray Crystallography; D. Reidel Publishing, Volume IV; 1985.

  19. 19.

    De Ridder, D.J.A.; Schenk, H..Acta Crystallogr. 1995,B51 231.

Download references

Author information

Correspondence to Edward J. Valente.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuller, J.F., Valente, E.J. 4- and 5-nitroindane. J Chem Crystallogr 26, 815–821 (1996). https://doi.org/10.1007/BF01670314

Download citation

Key Words

  • Structure
  • indane
  • indane derivatives
  • nitroindanes
  • crystallography
  • nmr
  • infrared
  • ultraviolet