Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

An improved fluorimetric method for assay of Dopa in urine and tissues and its use for determination of urinary Dopa, at endogenous level, in different species

  • 25 Accesses

  • 14 Citations

Summary

An optimized fluorimetric method is presented which permits the analysis of DOPA in urine or tissues, at endogenous levels. A wide variety of eluates can be analyzed by applying the manual or the automated schedule. The automated manifold, developed for DOPA assay, may be used to estimate norepinephrine (NE) in other samples, by only changing the nature of reagents to be pumped. Amounts of DOPA as low as 0.3 ng/ml of eluate can be detected.

Determinations of endogenous DOPA are reported in urinary samples of Humans, Rats, Dogs and Sheeps, and in brain of Rats. The pattern of changes in DOPA urinary excretion has been investigated as a function of time in Rats. Dietary influences have been studied in Man, Rat and Dog.

It is concluded that the greatest part of free and conjugated DOPA excreted in urine of these animals has an endogenous origin.

Résumé

Nous avons étudié une méthode fluorimétrique pour doser la DOPA dans les urines et les tissus, à l'état endogène. Une grande variété d'éluats peut être dosée en appliquant la méthode manuelle ou le procédé en flux continu. Le même diagramme en flux continu peut être utilisé pour le dosage de la noradrénaline dans d'autres éluats, avec la seule modification des réactifs pompés. Des concentrations en DOPA aussi faibles que 0,3 ng/ml d'éluat peuvent être dosées.

Le dosage a été appliqué aux urines de Rat, de Chien, de Mouton et d'Homme et au cerveau de Rat.

Les fluctuations d'excrétion de la DOPA, en fonction du temps, ont été examinées chez le Rat. L'influence de la nature des aliments ingérés a été étudiée chez le Rat, le Chien et l'Homme. Ces résultats montrent que la plus grande partie de la DOPA urinaire peut être rapportée à un métabolisme endogéne.

This is a preview of subscription content, log in to check access.

References

  1. Anton, A. H., Sayre, D. F. The distribution of dopamine and dopa in various animals and a method for their determination in diverse biological material. J. Pharmacol. exp. Ther.145, 326–336 (1964).

  2. Bernheimer, H. Über das Vorkommen von Katecholaminen und von 3, 4-Dihydroxyphenylalanin (DOPA) im Auge. Naunyn-Schmied. Arch. exp. path. u. Pharmak.247, 202–213 (1964).

  3. Bertler, A., Carlsson, A., Rosengren, E. A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta Physiol. scand.44, 273–292 (1958).

  4. Dalmaz, Y., Peyrin, L.: A rapid procedure for Chromatographie isolation of DOPA, DOPAC, epinephrine, norepinephrine and dopamine from a single urinary sample at endogenous level. J. of Chromatography (under publication).

  5. Drujan, B. D., Sourkes, T. L., Layne, D. S., Murphy, G. F. Differential determination of catecholamines in urine. Canad. J. Biochem. Physiol.37, 1153–1158 (1959).

  6. Geissbuehler, F. Méthode de dosage fluorimétrique de la DOPA plasmatique à des taux submicromolaires. Clin. Chim. Acta45, 423–427 (1973).

  7. Goldin, B. R., Peppercorn, M. A., Goldman, P. Contributions of host and intestinal microflora in the metabolism of L-DOPA by the Rat. J. Pharmacol. exp. Ther.186, 160–166 (1973).

  8. Gmdotti, A., Cheney, D. L., Trabucchi, M., Doteuchi, M., Wang, C., Hawkins, R. A. Focussed microwave radiation: A technique to minimize post mortem changes of cyclic nucleotides, dopa and choline and to preserve brain morphology. Neuropharmacology13, 1115–1122 (1974).

  9. Hare, T. A., Beasley, B. L., De Simone, S. M., Vogel, W. H. Simultaneous measurement of DOPA and its primary metabolites in physiological fluids. Biochem. Med.11, 305–311 (1974).

  10. Hefti, F., Lichtensteiger, W. An enzymatic-isotopic method for DOPA and its use for the measurement of dopamine synthesis in rat substantia nigra. J. Neurochem.27, 647–649 (1976).

  11. Hoedtke, R. D., Wurtman, R. J. Synthesis of DOPA in Rat stomach following ingestion of cereals. Metabolism23, 25–31 (1974).

  12. Imai, K., Arizumi, N., Wang, M. T., Yoshive, S., Tamura, Z. Gas chromatographie determination of 3, 4-dihydroxyphenylalanine (DOPA) in urine. Chem. Pharm. Bull.20, 2436–2439 (1972).

  13. Imai, K., Sugiura, M., Kubo, H., Tamura, Z., Ohya, K., Tsunakawa, N., Hirayama, K., Narabayashi, H. Studies on the metabolism and excretion of L-3,4-dihydroxyphenylalanine in Human beings by gas chromatography. Chem. Pharm. Bull.20, 759–764 (1972).

  14. Johnson, J. C., Gold, G. J., Clouet, D. H. An improved method for the assay of dopa. Analyt. Biochem.54, 129–136 (1973).

  15. Kehr, W. Influence of L-3-methoxytyrosine on monoamine synthesis in Rat brain. Naunyn-Schmied. Arch. Pharmacol.290, 347–356 (1975).

  16. Kehr, W., Carlsson, A., Lindqvist, M. A method for the determination of 3, 4-dihydroxyphenylalanine (DOPA) in brain. Naunyn-Schmied. Arch. Pharmacol.274, 273–280 (1972).

  17. Landsberg, L., Taubin, H. L. Uptake and metabolism of L-3, 4-dihydroxyphenylalanine (DOPA) in Rat tissues. Biochem. Pharmacol.22, 2789 to 2800 (1973).

  18. Lindqvist, M., Kehr, W., Carlsson, A. Attempts to measure endogenous levels of DOPA and 5-hydroxytryptophan in Rat brain. J. Neural Transm.36, 161–176 (1975).

  19. McGeer, E. G., McGeer, P. L. Catecholamine content of spinal cord. Canad. J. Biochem.40, 1141–1151 (1962).

  20. Montagu, K. Some catechol compounds other than noradrenaline and adrenaline in brains. Biochem. J.86, 9–11 (1963).

  21. O'Gorman, L. P., Borud, O., Khan, I. A., Gjessing, L. R. The metabolism of L-3, 4-dihydroxyphenylalanine in Man. Clin. Chim. Acta29, 111 to 119 (1970).

  22. Peyrin, L., Cottet-Emard, J. M. Automated specific fluorimetric methods for epinephrine and norepinephrine assay in a single biological extract. Analyt. Biochem.56, 515–531 (1973).

  23. Rivera-Calimlin, L., Dujovne, C., Morgan, J. P., Bianchine, J., Lasagna, L. Absorption and metabolism of L-DOPA by the human stomach. Europ. J. Clin. Invest.1, 313–320 (1971 a).

  24. Rivera-Calimlin, L., Dujovne, C., Morgan, J. P., Bianchine, J., Lasagna, L. L-3, 4-dihydroxyphenylalanine metabolism by the gut in vitro. Biochem. Pharmacol.20, 3051–3057 (1971 b).

  25. Romero, J. A., Chalmers, J. P., Cottman, K., Lytle, L. D., Wurtman, R. J. Regional effects of L-dihydroxyphenylalanine (L-DOPA) on norepinephrine metabolism in rat brain. J. Pharmacol. exp. Ther.180, 277–285 (1972).

  26. Sano, I., Gamo, T., Kakimoto, Y., Taniguchi, K., Takesada, M., Nishinuma, K. Distribution of catechol compounds in human brain. Biochim. Biophys. Acta32, 586–587 (1959).

  27. Sano, I., Taniguchi, K., Gamo, T., Takesada, M., Kakimoto, Y. Die Katechinamine im Zentralnervensystem. Klin. Wochenschr.38, 57–62 (1960).

  28. Shaw, K. N. F., McMillan, A., Armstrong, M. D. The metabolism of 3, 4-dihydroxyphenylalanine. J. Biol. Chem.226, 255–266 (1957).

  29. Shindo, H., Nakajima, E., Kawai, K., Miyakoshi, N., Tanaka, K. Studies on the metabolism of D- and L-isomers of DOPA. III. Adsorption, distribution and excretion of D- and L-DOPA-14C in Rats following intravenous and oral administration. Chem. Pharm. Bull.21, 817–825 (1973 a).

  30. Shindo, H., Komai, T., Tanaka, K., Nakajima, E., Miyakoshi, N. Studies on the metabolism of D- and L-isomers of DOPA. IV. Urinary and tissue metabolites of D- and L-DOPA-14C after intravenous and oral administration to Rats. Chem. Pharm. Bull.21, 826–836 (1973 b).

  31. Shindo, H., Maeda, T. Studies on the metabolism of D- and L-isomers of DOPA. VI. Metabolism of DOPA in Rat kidney. Chem. Pharm. Bull.22, 1721–1731 (1974).

  32. Sourkes, T. I., Murphy, G. F. Determination of catecholamines and catecholamino acids by differential spectrophotofluorimetry. In: Methods in Medical Research (Quastel, J. H., ed.), Vol. IX, p. 147 ff. Chicago: Year Book Med. Publ. 1961.

  33. Spiegel, H. E., Christian R. P. An analytical method for measuring DOPA and some metabolites in urine and plasma of Parkinsonian patients. Clin. Chim. Acta31, 143–148 (1971).

  34. Spiegel, H. E., Tonchen, A. E. Semi-automated method for measurement of DOPA in plasma. Clin. Chem.16, 763–765 (1970).

  35. Takahashi, H., Fitzpatrick, T. B. Quantitative determination of DOPA: its application to measurement of DOPA in urine and in the assay of tyrosinase in serum. J. Invest. Dermatol.42, 161–165 (1964).

  36. Turler, K., Käser, H. Quantitative fluorimetric determination of urinary DOPA and its significance for the diagnosis of neural crest tumours. Clin. Chim. Acta32, 41–51 (1971).

  37. Wegmann, A. Determination of 3-hydroxytyramine and DOPA in various organs of Dog after DOPA infusion. Naunyn-Schmied. Arch. exp. Path. u. Pharmak.246, 184–190 (1963).

  38. Wegmann, A., Kako, K., Chrysohou, A. DOPA uptake and catecholamine content in heart and spleen. Am. J. Physiol.201, 673–676 (1961).

  39. Wiegand, R. G., Perry, J. E. Effect of L-DOPA and N-methyl-N-benzyl-2-propynylamine HC1 on DOPA dopamine, norepinephrine, epinephrine and serotonin levels in mouse brain. Biochem. Pharmacol.7, 181–186 (1961).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cottet-Emard, J.M., Peyrin, L. An improved fluorimetric method for assay of Dopa in urine and tissues and its use for determination of urinary Dopa, at endogenous level, in different species. J. Neural Transmission 41, 145–173 (1977). https://doi.org/10.1007/BF01670279

Download citation

Keywords

  • Public Health
  • Urinary Sample
  • Urinary Excretion
  • Great Part
  • Dopa