Algebra and Logic

, Volume 19, Issue 2, pp 85–93 | Cite as

A totally transcendental decidable theory without constructivizable homogeneous models

  • S. S. Goncharov


Mathematical Logic Decidable Theory Homogeneous Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. S. Goncharov and A. T. Nurtazin, "Constructive models for complete decidable theories," Algebra Logika,12, No. 2, 125–142 (1973).Google Scholar
  2. 2.
    S. S. Goncharov, "A totally transcendental theory with a nonconstructivizable prime model," Sib. Mat. Zh.,21, No. 1, 44–51 (1980).Google Scholar
  3. 3.
    S. S. Goncharov, "Constructivizability of superatomic boolean algebras," Algebra Logika,12, No. 1, 31–40 (1973).Google Scholar
  4. 4.
    S. S. Goncharov, "Constructivizability of prime models," in: Third All-Union Conf. Math. Logic [in Russian], Novosibirsk (1974), pp. 46–47.Google Scholar
  5. 5.
    S. S. Goncharov and V. N. Drobotun, "A generalization of constructivization," in: Fourteenth All-Union Algebraic Conf. [in Russian], Vol. 2, Novosibirsk (1977), pp. 93–94.Google Scholar
  6. 6.
    S. S. Goncharov, "Strong constructivizability of homogeneous models," Algebra Logika,17, No. 4, 336–368 (1978).Google Scholar
  7. 7.
    Yu. L. Ershov, Theory of Numerations [in Russian], Vol. 3, Novosibirsk (1974).Google Scholar
  8. 8.
    C. C. Chang and H. J. Keisler, Model Theory, Elsevier North-Holland (1977).Google Scholar
  9. 9.
    M. G. Peretyat'kin, "A criterion for strong constructivizability of a homogeneous model," Algebra Logika,17, No. 4, 436–454 (1978).Google Scholar
  10. 10.
    G. W. Day, "Hyperatomic boolean algebras," Pac. J. Math.,23, 479–489 (1967).Google Scholar
  11. 11.
    L. Harrington, "Recursively presentable prime models," J. Symb. Logic,39, 305–309 (1974).Google Scholar
  12. 12.
    T. S. Millar, "Foundations of recursive model theory," Ann. Math. Logic,13, 45–72 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • S. S. Goncharov

There are no affiliations available

Personalised recommendations