Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Finite groups with decomposable Sylow 2-subgroups

  • 21 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    R. Zh. Aleev, "Conjugacy of involutions in finite groups with decomposable Sylow 2-subgroups," Algebra i Logika,14, No. 5, 491–522 (1975).

  2. 2.

    M. I. Kargapolov and Yu. I. Merzlyakov, Foundations of Group Theory [in Russian], Nauka, Moscow (1972).

  3. 3.

    V. D. Mazurov, "Finite groups whose solvable subgroups have 2-length equal to 1," Algebra i Logika,11, No. 4, 438–469 (1972).

  4. 4.

    O. Yu. Shmidt, Selected Works, Mathematics [in Russian], Akad. Nauk SSSR (1959).

  5. 5.

    J. L. Alperin, R. Brauer, and D. Gorenstein, "Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups," Trans. Amer. Math. Soc.,151, No. 1, 1–261 (1970).

  6. 6.

    J. L. Alperin and D. Gorenstein, "The multiplicators of certain simple groups," Proc. Amer. Math. Soc.,17, No. 2, 515–519 (1966).

  7. 7.

    G. Glauberman, "Central elements in core-free groups," J. Algebra,4, No. 3, 403–420 (1966).

  8. 8.

    D. M. Goldschmidt, "2-Fusion in finite groups," Ann. Math.,99, No. 1, 70–117 (1974).

  9. 9.

    D. Gorenstein, Finite Groups, Harper and Row, New York (1968).

  10. 10.

    D. Gorenstein and K. Harada, "Finite groups whose Sylow 2-subgroups are the direct product of two dihedral groups," Ann. Math.,95, No. 1, 1–54 (1972).

  11. 11.

    D. Gorenstein and J. H. Walter, "The characterization of finite groups with dihedral Sylow 2-subgroups," J. Algebra,2, No. 1, 85–151 (1965);2, No. 2, 218–270 (1965);2, No. 3, 354–393 (1965).

  12. 12.

    D. Gorenstein and J. H. Walter, "The π-layer of a finite group," Illinois J. Math.,15, No. 4, 555–564 (1971).

  13. 13.

    D. Gorenstein and J. H. Walter, "Balance and generation in finite groups," J. Algebra,33, No. 2, 224–287 (1975).

  14. 14.

    K. Harada, "Finite simple groups with short chains of subgroups," J. Math. Soc. Japan,20, No. 4, 655–672 (1968).

  15. 15.

    M. E. Harris, "Finite groups with given Sylow 2-subgroups and product fusion," Commun. Algebra,2, No. 2, 143–179 (1974).

  16. 16.

    B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin-Heidelberg (1967).

  17. 17.

    Z. Janko, "A new finite simple group with Abelian Sylow 2-subgroups and its characteristics," J. Algebra,3, No. 2, 147–186 (1966).

  18. 18.

    I. Schur, "Über die Darstellung der symmetrischen und der alternierenden Gruppen durch gebrochene lineare Substitutionen," J. reine angew. Math.,139, 155–250 (1911).

  19. 19.

    F. L. Smith, "Finite groups whose Sylow 2-subgroups are the direct product of a dihedral and a semidihedral subgroup," Illinois J. Math.,17, No. 3, 352–386 (1973).

  20. 20.

    F. L. Smith, "Groups whose Sylow 2-subgroups are the direct product of two semidihedral groups," Illinois J. Math.,17, No. 3, 386–396 (1973).

  21. 21.

    J. H. Walter, "Finite groups with Abelian Sylow 2-subgroups of order 8," Invent. Math.,2, No. 5, 332–376 (1967).

  22. 22.

    J. H. Walter, "The characterization of finite groups with Abelian Sylow 2-subgroups," Ann. Math.,89, No. 3, 405–514 (1969).

Download references

Additional information

Translated from Algebra i Logika, Vol. 14, No. 6, pp. 611–646, November–December, 1975.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aleev, R.Z. Finite groups with decomposable Sylow 2-subgroups. Algebra and Logic 14, 375–392 (1975). https://doi.org/10.1007/BF01668469

Download citation

Keywords

  • Mathematical Logic
  • Finite Group