Advertisement

Zoomorphology

, Volume 110, Issue 6, pp 301–311 | Cite as

Tissue organization ofFarrea occa (Porifera, Hexactinellida)

  • Henry M. Reiswig
  • Dorte Mehl
Article

Summary

The tissue organization ofFarrea occa has been examind by light microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). It was found to agree closely with the hexactinellid model established forRhabdocalyptus dawsoni by Mackie and Singla (1983) in consisting of a thin general syncytium incorporating few discrete cellular components, several of which share membrane continuity with the general syncytium by distinctive plug junctions. The general syncytium, supported by a thin collagenous mesolamella, is specialized regionally as dermal membrane, gastral membrane, peripheral trabecular strands, and primary reticulum (R1) of flagellated chambers. Extensions of the syncytium, which lack mesolamella support, form the distinctive secondary reticulum (R2) inside chambers and a newly discovered structure, the “inner membrane”, which occupies the central region of flagellated chambers. The choanosyncytia are enucleate networks of collar bodies and stolons embedded in R1 and plugged to R1 and choanoblasts. The discrete cell population consists of choanoblasts and archeocytes located in the thin mesohyle space and plugged to syncytial elements, cystencytes and vacuolar cells also located in the mesohyle but lacking plug connections, and granular cells emergent on R1 and apparently not bearing plug connections. The status of scleroblast syncytia has not been resolved. Large populations of rod-shaped bacteria occupy the mesohyle space; intracellular ovoid bodies, possible symbiotic prokaryotes, are common in R1 and R2. The previously unknown inner membrane probably functions to control flagellar activity on a very localized scale and to accumulate and release egesta in packages.

Keywords

Scanning Electron Microscopy Transmission Electron Microscopy Cell Population Light Microscopy Central Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ac

archeocyte congeries

ap

apopyle

ar

archeocyte

b

bacterium

c

collagen fibrils

cb

collar body

cbl

choanoblast

cbs

collar body socket

ch

choanosome

cm

collar microvilli

co

choanocyte collar

cr

crystalloid

cs

connecting strand

dm

dermal membrane

dv

debris vacuole

e

exhalant opening

ex

exhalant space

f

flagellum

fn

filamentous network

Gb

Golgi body

gf

glycocalyx filaments

gm

gastral membrane

im

inner membrane

is

inhalant space

ml

mesolamella

ms

mesohyle space

mt

mitochondrion

n1

nucleus of R1

o

ostium

ob

ovoid body

os

osmiophilic body

pm

plasma membrane

pr

prosopyle

pt

peripheral trabeculae

R1

primary reticulum

R2

secondary reticulum

s

spicule space

ser

smooth endoplasmic reticulum

ts

trabecular strand

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ax P (1989) Basic phylogenetic systematization of the Metazoa. In: Ferholm B, Jörnwall H (eds) The Hierarchy of Life. Amsterdam, Elsevier, pp 229–245Google Scholar
  2. Bergquist PR (1978) Sponges. Berkeley, University of California Press, pp 1–268Google Scholar
  3. Bergquist PR (1985) Poriferan relationships. In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 14–27Google Scholar
  4. Böger H (1988) Versuch über die phylogenetische Systematik der Porifera. Meyniana 40:143–154Google Scholar
  5. Boury-Esnault N, De Vos L (1988)Caulophacus cyanae, n. sp., une éponge hexactinellide des hydrothermales. Biogéographie du genreCaulophacus Schulze, 1887. Oceanol Acta 1988:51–60Google Scholar
  6. Carter HJ (1885) Report on a collection of marine sponges from Japan made by Dr. J. Anderson. Ann Mag N H (5) 15:387–406Google Scholar
  7. Connes R, Diaz J-P, Paris J (1971) Choanocytes et cellule centrale chez la DémospongeSuberites massa Nardo. C R Acad Sci Paris 273:1590–1593Google Scholar
  8. Dohle W (1986) Die Evolution der Wirbellosen. Sb Ges Naturforsch Freunde Berlin NF 26:67–90Google Scholar
  9. Ijima I (1901) Studies on the Hexactinellida. Contribution I. (Euplectellidae). J Coll Sci Imp Univ Tokyo 15:1–299Google Scholar
  10. Langenbruch P-F, Jones WC (1989) A new type of central cell in the choanocyte chambers ofPellina fistulosa (Porifera, Demospongiae). Zoomorphology 109:11–14Google Scholar
  11. Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology ofRhabdocalyptus dawsoni (Lambe, 1873). Philos Trans R Soc Lond B 301:365–400Google Scholar
  12. Mackie GO, Lawn ID, Pavans de Ceccatty M (1983) Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses inRhabdocalyptus dawsoni (Lambe, 1873). Philos Trans R Soc Lond B 301:401–418Google Scholar
  13. Mehl D, Reiswig HM (in press) The presence of flagellar vanes in choanomeres of Porifera and their possible phylogenetic implications. Z Zool Syst EvolutionsforschGoogle Scholar
  14. Reid REH (1958) A monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland. Part I. Paleontogr Soc Lond 111:1–46Google Scholar
  15. Reiswig HM (1971) The axial symmetry of sponge spicules and its phylogenetic significance. Cah Biol Mar 12:505–514Google Scholar
  16. Reiswig HM (1979) Histology of Hexactinellida (Porifera). In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. édition du CNRS, Paris 291:173–180Google Scholar
  17. Reiswig HM (in press) New perspectives on the hexactinellid genusDactylocalyx Stutchbury. In: Reitner J, Keupp H (eds) Fossil and Recent Sponges. Proc Int Sponge Symp Berlin 1988. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Reiswig HM, Brown MJ (1977) The central cells of sponges. Their distribution, form and function. Zoomorphology 88:81–94Google Scholar
  19. Reiswig HM, Mackie GO (1983) Studies on hexactinellid sponges III. The taxonomic status of Hexactinellida within the Porifera. Philos Trans R Soc Lond B 301:419–428Google Scholar
  20. Salomon D (in press) Are Protospongiidae the stem group of modern Hexactinellida? In: Reitner J, Keupp H (eds) Fossil and Recent Sponges. Proc Int Sponge Symp Berlin 1988. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. Salomon D, Barthel D (in press) External choanosome morphology of the hexactinellid spongeAulorossella vanhoeffeni Schulze & Kirkpatrick, 1910. A prilimary report. Senkenberg MaritGoogle Scholar
  22. Schulze FE (1887) Report on the Hexactinellida collected by H.M.S. “Challenger” during the years 1873–1876. H.M.S. Challenger Sci Results Zool 21:1–513Google Scholar
  23. Schulze FE (1899) Zur Histologie der Hexactinelliden. Sb Akad Wiss Berlin 14:198–209Google Scholar
  24. Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New York, pp 1–662Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Henry M. Reiswig
    • 1
  • Dorte Mehl
    • 2
  1. 1.Redpath Museum and Biology DepartmentMcGill UniversityMontrealCanada
  2. 2.Institut für PaläontologieFreie UniversitätBerlin 33Germany

Personalised recommendations