Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Production and modifications of extracellular structures during development of chytridiomycetes

  • 113 Accesses

  • 23 Citations


In development of the primitive fungi, chytridiomycetes, unwalled zoospores bearing single, posterior flagella are transformed into walled, round-cells which elaborate the thallus. Production, structural modification, or release of extracellular material are involved with each transition of developmental stage. This article reviews the variety and developmental changes of extracellular materials found at the cell surface of chytridiomycetes. A cell coat, produced from Golgi-derived vesicles during zoosporogenesis, is visible around free swimming zoospores of some chytridiomycetes. How the zoospore surface receives and transduces signals is not widely explored, but it is known that fenestrated cisternae and simple cisternae, which are integrated into the microbody-lipid globule complex, are spatially and structurally associated with the plasma membrane and flagellar apparatus. This spatial association, as well as the cytochemical localization of calcium in fenestrated cisternae, suggest a mechanism for signal transduction and for regulation of zoospore motility. Zoospores become encased in a new layer of extracellular material as the zoospore encysts. Among some chytrids the source of this material is preexisting vesicles which fuse with the plasma membrane. Among other zoospores, a readily identifiable population of encystment vesicles is not apparent, demonstrating that there is no single pattern or mechanism for zoospore encystment in chytridiomycetes. Encysted zoospores developing into thalli, typically produce cell walls with a microfibrillar substructure. Ultrastructural analysis of walls reveals distinctive architecture and remarkable sculpturing which have been used in systematics of some members of chytridiomycetes. Nothing is known as to underlying controls of cytoskeletal elements and plasma membrane enzyme complexes in wall biogenesis. Many changes in cell surface structures accompany thallus maturation. Septa, many traversed with plasmodesmata, are produced in most chytrid thallus types. As sporangia and resting spores prepare for the production and release of zoospores, additional extracellular layers of material are frequently produced. Polarized deposits of extracellular material become discharge plugs, discharge vesicles, or endoopercula. Interstitial material is also released into cleavage furrows. Circumscissile or localized digestion of walls produce operculate or inoperculate exit ports for zoospore release. Cryofixation preserves more extensive extracellular material than does conventional chemical fixation, and broader application of cryofixation may radically alter our current view of cell surface structure. Thus chytridiomycetes exhibit a range in patterns for the occurrence and subsequent modifications of extracellular materials, even for members within the same order. The most universally recognized role for these extracellular materials is protection. Although there is a reasonable view of the types of extracellular material involved in chytridiomycete development, we have only limited understandings of their biogenesis or roles in regulation and communication, areas awaiting more investigations.

This is a preview of subscription content, log in to check access.



Nomarski-differential contrast optics


transmission electron microscopy


  1. Baro DJS (1992) Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84: 1–11

  2. — (1990) Phylum Chytridiomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 454–466

  3. — (1981) The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. BioSystems 14: 359–370

  4. Barstow WE, Pommerville J (1980) The ultrastructure of cell formation and gamma particles during encystment ofAllomyces macrogynus zoospores. Arch Microbiol 128: 179–189

  5. Beakes GW, Canter HM, Jaworski GHM (1988) Zoospore ultrastructure ofZygorhizidium affluens andZ. planktonicum, two chytrids parasitizing the diatomAsterionella formosa. Can J Bot 66: 1054–1067

  6. — — — (1992 a) Comparative ultrastructural ontogeny of zoosporangia ofZygorhizidium affluens andZ. planktonicum, chytrid parasites of the diatomAsterionella formosa. Mycol Res 96: 1047–1059

  7. — — — (1992 b) Ultrastructural study of operculation (discharge apparatus) and zoospore discharge in zoosporangia ofZygorhizidium affluens andZ. planktonicum, chytrid parasites of the diatomAsterionella formosa. Mycol Res 96: 1060–1067

  8. Bowman BH, Taylor JW, Borwnlee AG, Lee J, Lu S-D, White TJ (1992) Molecular evolution of the fungi: relationships of basidiomycetes, ascomycetes, and chytridiomycetes. Mol Biol Evol 9: 285–296

  9. Breton A, Dusser M, Gaillard-Martinie B, Guillot J, Millet L, Prensier G (1991)Piromyces rhizinflata nov.sp., a strictly anaerobic fungus from faeces of the Saharian ass: a morphological, metabolic and ultrastructural study. FEMS Microbiol Lett 82: 1–8

  10. Couch JN, Bland CE (1985) The genusCoelomomyces. Academic Press, New York

  11. Dalley NE, Sonneborn DR (1982) Evidence thatBlastocladiella emersonii zoospore chitin synthetase is located at the plasma membrane. Biochim Biophys Acta 686: 65–76

  12. Dorward DW, Powell MJ (1982) Cross-linking bridges associated with the microbody-lipid globule complex inChytriomyces aureus andChytriomyces hyalinus. Protoplasma 112: 181–188

  13. — — (1983) Cytochemical detection of polysaccharides and the ultrastructure of the cell coat of zoospores ofChytriomyces aureus andChytriomyces hyalinus. Mycologia 75: 209–220

  14. Federici BA, Lucarotti CJ (1986) Structure and behavior of the meiospore ofCoelomomyces dodgei during encystment on the copepod host,Acanthocyclops vernalis. J Invertebr Pathol 48: 259–268

  15. Fuller MS, Reichle RE (1968) The fine structure ofMonoblepharella sp. zoospores. Can J Bot 46: 279–283

  16. Guillot J, Breton A, Damez M, Dusser M, Gaillard-Martinie B, Millet L (1990) Use of lectins for a comparative study of cell wall composition of different anaerobic rumen fungal strains. FEMS Microbiol Lett 67: 151–156

  17. Heath IB, Bauchop T, Skipp RA (1983) Assignment of the rumen anaerobeNeocallimastix frontalis to the Spizellomycetales (chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can J Bot 61: 295–307

  18. Held AA (1974) Attraction and attachment of zoospores of the parasitic chytridRozella allomycis in response to host-dependent factors. Arch Microbiol 95: 97–114

  19. Hohn TM, Lovett JS, Bracker CE (1984) Characterization of the major proteins in gamma particles, cytoplasmic organelles inBlastocladiella emersonii zoospores. J Bacteriol 158: 253–263

  20. Jansson H-B, Thiman L (1992) A preliminary study of chemotaxis of zoospores of the nematode-parasitic fungusCatenaria anguillulae. Mycologia 84: 109–112

  21. Jen CJ, Haug A (1979 a) Changes in surface properties of developing zoospores ofBlastocladiella emersonii. binding of concanavalin A. J Gen Microbiol 115: 145–151

  22. — — (1979 b) Concanavalin A-induced lysis of zoospores ofBlastocladiella emersonii. Exp Cell Res 120: 425–428

  23. Kazama FY (1972) Ultrastructure and phototaxis of the zoospores ofPhlyctochytrium sp., an estuarine chytrid. J Gen Microbiol 71: 555–566

  24. —, Schornstein KL (1977) A freeze-etch study of the phototactic zoospores ofPhlyctochytrium sp., a marine fungus. Protoplasma 91: 143–156

  25. Kerwin JL (1983) Biological aspects of the interaction betweenCoelomomyces psorophorae zygotes and the larvae ofCuliseta inornata: host-mediated factors. J Invertebr Pathol 41: 224–232

  26. Koch WJ (1968) Studies of the motile cells of chytrids. V. Flagellar retraction in posteriorly uniflagellate fungi. Amer J Bot 55: 841–859

  27. Lehnen LP Jr, Powell MJ (1989) The role of kinetosome-associated organelles in the attachment of encysting secondary zoospores ofSaprolegnia ferax to substrates. Protoplasma 149: 163–174

  28. Li J, Heath IB, Cheng K-J (1991) The development and zoospore ultrastructure of a polycentric chytridiomycete gut fungus,Orpinomyces joyonii comb.nov. Can J Bot 69: 580–589

  29. — —, Packer L (1993) The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi Neocallimasticaceae and Chytridiomycota. II. Cladistic analysis of structural data and description of Neocallimasticales ord.nov. Can J Bot 71: 393–407

  30. Lovett JS (1968) Reactivation of ribonucleic acid and protein synthesis during germination ofBlastodadiella zoospores and the role of the ribosomal nuclear cap. J Bacteriol 96: 962–969

  31. McNitt R (1974 a) Ultrastructure ofPhlyctochytrium irregulare zoospores. Cytobiologie 9: 307–320

  32. — (1974 b) Zoosporogenesis inPhlyctochytrium irregulare. Cytobiologie 9: 290–306

  33. Manier J-F, Loubès C (1978)Callimastix cyclopis Weissenberg, 1912 (Phycomycète, Blastocladiale) parasite d'unMicrocyclops claus, 1893 (Copépode, Cyclopoide) récolté au tcad: particularités ultrastructurales. Protistologica 14: 493–501

  34. Muehlstein LK, Amon JP, Leffler DL (1988) Chemotaxis in the marine fungusRhizophydium littoreum. Appl Environ Microbiol 54: 1668–1672

  35. Munn EA, Orpin CG, Hall FJ (1981) Ultrastructural studies of the free zoospore of the rumen phycomyceteNeocallimastix frontalis. J Gen Microbiol 125: 311–323

  36. Myers RB, Cantino EC (1974) The gamma particle. In: Wolsky A (ed) Monographs in developmental biology. Karger, Basel, pp 1–117

  37. Olson LW (1984)Allomyces —a different fungus. Op Bot 73: 1–96

  38. Orpin CG, Bountiff L (1978) Zoospore chemotaxis in the rumen phycomyceteNeocallimastix frontalis. J Gen Microbiol 104: 113–122

  39. Pommerville J (1977) Chemotaxis ofAllomyces gametes. Exp Cell Res 109: 43–51

  40. — (1978) Analysis of gamete and zygote motility inAllomyces. Exp Cell Res 113: 161–172

  41. —, Olson LW (1987) Evidence for a male-produced pheromone inAllomyces macrogynus. Exp Mycol 11: 245–248

  42. —, Strickland JB, Harding KE (1990) Pheromone interactions and ionic communication in gametes of aquatic fungusAllomyces macrogynus. J Chem Ecol 16: 121–131

  43. Porter D, Smiley R (1980) Development of the sporangium and discharge apparatus in a marine chytrid,Phlyctochytrium sp. Bot Mar 23: 99–115

  44. Powell MJ (1974) Fine structure of plasmodesmata in a chytrid. Mycologia 66: 606–614

  45. — (1976 a) Development of the discharge apparatus in the fungusEntophlyctis. Arch Microbiol 111: 59–71

  46. — (1976 b) Ultrastructural changes in the cell surface ofCoelomomyces punctatus infecting mosquito larvae. Can Bot 54: 1419–1437

  47. — (1978) Phylogenetic implications of the microbody-lipid globule complex in zoosporic fungi. BioSystems 10: 167–180

  48. — (1981 a) Ultrastructure ofPolyphagus euglenae zoospores. Can J Bot 59: 2049–2061

  49. — (1981 b) Zoospore structure of the mycoparasitic chytridCaulochytrium protostelioides Olive. Amer J Bot 68: 1074–1089

  50. — (1982) Ultrastructure of the host-parasite interface betweenAllomyces javanicus and its endoparasiteCatenaria allomycis. Bot Gaz 143: 176–187

  51. — (1983) Localization of antimonate-mediated precipitates of cations in zoospores ofChytriomyces hyalinus. Exp Mycol 7: 266–277

  52. — (1993) Looking at mycology with a Janus face: a glimpse at chytridiomycetes active in the environment. Mycologia 85: 1–20

  53. —, Blackwell WH (1991) A proposed dispersal mechanism forSeptosperma rhizophydii. Mycologia 83: 673–680

  54. —, Gillette L (1987) Septal structure of the chytridRhizophlyctis harderi. Mycologia 79: 635–639

  55. —, Roychoudhury S (1992) Ultrastructural organization ofRhizophlyctis harderi zoospores and redefinition of the type 1 microbody-lipid globule complex. Can J Bot 70: 750–761

  56. Reichle RE (1972) Fine structure ofOedogoniomyces zoospores, with comparative observations onMonoblepharella zoospores. Can J Bot 50: 819–824

  57. Robertson JA (1972) Phototaxis in a newAllomyces. Arch Microbiol 85: 259–266

  58. Roychoudhury S, Powell MJ (1992) Precise flagellar configuration of theRhizophlyctis harderi zoospore. Can J Bot 70: 762–771

  59. Selitrennikoff CP, Dalley NE, Sonneborn DR (1980) Regulation of the hexosamine biosynthetic pathway in the water moldBlastodadiella emersonii: sensitivity to endproduct inhibition is dependent upon the life cycle phase. Proc Natl Acad Sci USA 77: 5998–6002

  60. Sewall T, Olson L, Lange L, Pommerville J (1986) The effect of monensin on gametogenesis and zoosporogenesis in the aquatic fungus,Allomyces macrogynus. Protoplasma 133: 129–139

  61. Sharon N, Lis H (1993) Carbohydrates in cell recognition. Scient Am 268: 82–89

  62. Sparrow FK (1960) Aquatic phycomycetes, 2nd rev edn. University of Michigan Press, Ann Arbor

  63. Taylor JW, Fuller MS (1981) The Golgi apparatus, zoosporogenesis and development of the zoospore discharge apparatus ofChytridium confervae. Exp Mycol 5: 35–59

  64. Travland LB (1979 a) Initiation of infection of mosquito larvae (Culiseta inornata) byCoelomomyces psorophorae. J Invertebr Pathol 33: 95–105

  65. — (1979 b) Structure of the motile cells ofCoelomomyces psorophorae and function of the zygote in encystment on a host. Can J Bot 57: 1021–1035

  66. Tunlid A, Nivens DE, Jansson H-B, White DC (1991) Infrared monitoring of the adhesion ofCatenaria anguillulae zoospores to solid surfaces. Exp Mycol 15: 206–214

  67. Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260: 340–342

  68. Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163: 150–160

Download references

Author information

Correspondence to Martha J. Powell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Powell, M.J. Production and modifications of extracellular structures during development of chytridiomycetes. Protoplasma 181, 123–141 (1994). https://doi.org/10.1007/BF01666392

Download citation


  • Carbohydrates
  • Chytridiomycetes
  • Extracellular material
  • Membranes
  • Ultrastructure
  • Zoospores