Journal of Soviet Mathematics

, Volume 42, Issue 2, pp 1610–1613

Measurable partitions of the circumference, induced by inner functions

  • A. B. Aleksandrov


In the paper one proves that a measurable partition of the circumference is induced by an inner function if and only if the corresponding operator of conditional mathematical expectation commutes with the M. Riesz projection.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Rokhlin, “On the fundamental concepts of measure theory,” Mat. Sb.,25 (67), 107–150 (1949).Google Scholar
  2. 2.
    P. Koosis, Introduction to Hp Spaces. With an Appendix on Wolff's Proof of the Corona Theorem, Cambridge Univ. Press (1980).Google Scholar
  3. 3.
    A. B. Aleksandrov, “The multiplicity of boundary values of inner functions,” Izv. Akad. Nauk ArmSSR, Ser. Mat.,20, No. 6, 416–427 (1985).Google Scholar
  4. 4.
    S. V. Hruscev, N. K. Nikol'skii, and B. S. Pavlov, “Unconditional bases of exponentials and of reproducing kernels,” Lect. Notes Math., No. 864, 214–335 (1981).Google Scholar
  5. 5.
    S. V. Hruscev and S. A. Vinogradov, “Free interpolation in the space of uniformly convergent Taylor series,” Lect. Notes Math., No. 864, 171–213 (1981).Google Scholar
  6. 6.
    N. K. Nikol'skii, Lectures on the Shift Operator [in Russian], Nauka, Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. B. Aleksandrov

There are no affiliations available

Personalised recommendations