Advertisement

Journal of Molecular Evolution

, Volume 1, Issue 1, pp 1–17 | Cite as

On the rate of molecular evolution

  • Motoo Kimura
  • Tomoko Ohta
Article

Summary

There are at least two outstanding features that characterize the rate of evolution at the molecular level as compared with that at the phenotypic level. They are; (1) remarkable uniformity for each molecule, and (2) very high overall rate when extrapolated to the whole DNA content.

The population dynamics for the rate of mutant substitution was developed, and it was shown that if mutant substitutions in the population are carried out mainly by natural selection, the rate of substitution is given byk = 4 N e s1v, whereN e is the effective population number,s1 is the selective advantage of the mutants, andv is the mutation rate per gamete for such advantageous mutants (assuming that 4N e s1 ≫ 1). On the other hand, if the substitutions are mainly carried out by random fixation of selectively neutral or nearly neutral mutants, we havek = v, wherev is the mutation rate per gamete for such mutants.

Reasons were presented for the view that evolutionary change of amino acids in proteins has been mainly caused by random fixation of neutral mutants rather than by natural selection.

It was concluded that if this view is correct, we should expect that genes of “living fossils” have undergone almost as many DNA base replacements as the corresponding genes of more rapidly evolving species.

Key-words

Molecular Evolutionary Rate Population Genetics Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, E. C., Yanofsky, Ch.: Proc. nat. Acad. Sci. (Wash.)58, 1895–1902 (1967).Google Scholar
  2. Crow, J. F.: Proc. XII Intern. Congr. Genetics3, 105–113 (1969).Google Scholar
  3. — Genetic loads and the cost of natural selection. In: Biomathematics 1, mathematical topics in population genetics. K. Kojima, ed., p. 127–177. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  4. —, Kimura, M.: Amer. Natur.99, 439–450 (1965).Google Scholar
  5. —, —, An introduction to population genetics theory. New York: Harper & Row 1970.Google Scholar
  6. Dayhoff, M. O. (ed.): Atlas of protein sequence and structure. Silver Spring, Maryland: National Biomedical Research Foundation 1969.Google Scholar
  7. Felsenstein, J.: Amer. Natur.105, 1–11 (1971).Google Scholar
  8. Fisher, R. A.: Proc. roy. Soc. Edinb.50, 205–220 (1930).Google Scholar
  9. Fitch, W. M., Margoliash, E.: The usefulness of amino acid and nucleotide sequences in evolutionary studies. In: Evolutionary biology, Steere, Dobzhansky & Hecht, eds. (in press).Google Scholar
  10. —, Markowitz, E.: Biochemical Genetics4, 579–593 (1970).Google Scholar
  11. Gibson, T. C., Scheppe, M. L., Cox, E. C.: Science169, 686–688 (1970).Google Scholar
  12. Haldane, J. B. S.: Proc. Camb. Phil. Soc.23, 838–844 (1927).Google Scholar
  13. —, Evolution3, 51–56 (1949).Google Scholar
  14. —, J. Genet.55, 511–524 (1957).Google Scholar
  15. —, J. Genet.57, 351–360 (1960).Google Scholar
  16. Jukes, T. H.: Molecules and evolution. New York: Columbia Univ. Press 1966.Google Scholar
  17. Kimura, M.: Ann. Math. Stat.28, 882–901 (1957).Google Scholar
  18. —, J. Genet.57, 21–34 (1960).Google Scholar
  19. —, Genetics47, 713–719 (1962).Google Scholar
  20. —, J. appl. Probability1, 177–232 (1964).Google Scholar
  21. —, Nature (Lond.)217, 624–626 (1968a).Google Scholar
  22. —, Genet. Res. Camb.11, 247–269 (1968b).Google Scholar
  23. —, Genetics61, 893–903 (1969a).Google Scholar
  24. —, Proc. nat. Acad. Sci. (Wash.)63, 1181–1188 (1969b).Google Scholar
  25. —, Crow, J. F.: Evolution17, 279–288 (1963).Google Scholar
  26. —, — Genet. Res.13, 127–141 (1969).Google Scholar
  27. —, Maruyama, T.: Heredity24, 101–114 (1969).Google Scholar
  28. —, Ohta, T.: Genetics61, 763–771 (1969a).Google Scholar
  29. —, —, Genetics63, 701–709 (1969b).Google Scholar
  30. King, J. L.: The influence of the genetic code on protein evolution. In: Biochemical evolution and the origin of life. E. Schoffeniels, ed. North Holland (in press).Google Scholar
  31. —, Jukes, T. H.: Science164, 788–798 (1969).Google Scholar
  32. - - Arnheim, N.: Nature (submitted).Google Scholar
  33. Mayr, E.: Animal species and evolution. Cambridge: Harvard University Press 1965.Google Scholar
  34. McLaughlin, P. J., Dayhoff, M. O.: Science168, 1469–1471 (1970).Google Scholar
  35. Muller, H. J.: Bull. Amer. Math. Soc.64, 137–160 (1958).Google Scholar
  36. Nei, M.: Genetics (in press).Google Scholar
  37. Ohta, T., Kimura, M.: Genetics64, 387–395 (1970).Google Scholar
  38. - - Genetics (in press).Google Scholar
  39. Richmond, R. C.: Nature (Lond.)225, 1025–1028 (1970).Google Scholar
  40. Romer, A. S.: The procession of life. London: Weidenfeld and Nicolson 1968.Google Scholar
  41. Sarich, V. M., Wilson, A. C.: Proc. nat. Acad. Sci. (Wash.)58, 142–148 (1967).Google Scholar
  42. Simpson, G. G.: Tempo and mode in evolution. New York: Columbia Univ. Press 1944.Google Scholar
  43. —, Pittendrigh, C. S., Tiffany, L. H.: Life: An introduction to biology. London: Routledge & Kegan Paul 1958.Google Scholar
  44. Vogel, F.: Nature (Lond.)201, 847 (1964).Google Scholar
  45. Wright, S.: Population structure as a factor in evolution. In: Moderne Biologie. F. W. Peter, Editor, p. 274–287. Festschrift für Hans Nachtsheim, Berlin (1950).Google Scholar
  46. Zuckerkandl, E., Pauling, L.: Evolutionary divergence and convergence in proteins. In: Evolving genes and proteins. V. Bryson, & H. J. Vogel eds., p. 97–166. New York: Academic Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Motoo Kimura
    • 1
  • Tomoko Ohta
    • 1
  1. 1.National Institute of GeneticsMishima Shizuoka-kenJapan

Personalised recommendations