Advertisement

Molecular and Cellular Biochemistry

, Volume 1, Issue 2, pp 169–187 | Cite as

The glycine cleavage system: Composition, reaction mechanism, and physiological significance

  • Goro Kikuchi
General and Review Articles a. invited review articles

Summary

The glycine cleavage system catalyzes the following reversible reaction: Glycine + THF + NAD+ ⇌ 5,10-methylene-THF + + CO2 + NH3 + NADH

Reversibility of the overall reaction was established through the studies with the enzymes prepared from liver mitochondria of rat and cock and from extracts ofArthrobacter globiformis grown on glycine. The glycine cleavage system is composed from four protein components. The four proteins were revealed to exist originally as an enzyme complex in the liver mitochondria. Partial reactions of glycine cleavage and glycine synthesis were studied in detail with partially purified individual protein components. Particularly a protein-bound intermediate of glycine metabolism could be isolated and its nature and role were clarified. A tentative scheme was presented to explain the whole process of the reversible glycine cleavage.

The glycine cleavage system was shown to represent the major pathway of catabolism of both glycine and serine in vertebrates, including mammals, birds, reptiles, amphibians, and fishes. Serine catabolism in these animals proceeds mainly by way of the cleavage of serine to form methylene-THF and glycine rather than deamination by serine dehydratase. In ureotelic and ammonotelic animals methylene-THF formed from the α-carbon of glycine as well as theβ-carbon of serine could be further oxidized to CO2 in either the mitochondria or the soluble tissue fractions, while in uricotelic animals methylene-THF could hardly be oxidized to CO2 and instead, was utilized mostly for purine synthesis. Glycine synthesis by the glycine cleavage system did not appear to have appreciable physiological significance in animals.

Keywords

Glycine Serine NADH Purine Reversible Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

THF

dl,l-tetrahydrofolic acid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. M. Greenberg, “Metabolic Pathways”, ed. by D. M. Greenberg, Vol. III, p. 96. Academic Press, New York (1969).Google Scholar
  2. [2]
    R. D. Sagers and J. C. Gunsalus, (1961) J. Bacteriol. 81, 541.Google Scholar
  3. [3]
    D. A. Richert, R. Amberg and M. Wilson, (1962) J. Biol. Chem. 237, 99.Google Scholar
  4. [4]
    J. D. Pitts and G. W. Crosbie, (1962) Biochem. J. 83, 35P.Google Scholar
  5. [5]
    K. M. Jones and Z. S. Bridgeland, (1966) Biochem. J. 99, 25P.Google Scholar
  6. [6]
    W. B. McConnell, (1964) Canadian J. Biochem. 42, 1293.Google Scholar
  7. [7]
    E. A. Cossins and S. K. Sinha, (1966) Biochem. J. 101, 542.Google Scholar
  8. [8]
    H. Kawasaki, T. Sato and G. Kikuchi, (1966) Biochem. Biophys. Res. Commun. 23, 227.Google Scholar
  9. [9]
    T. Sato, H. Kochi, Y. Motokawa, H. Kawasaki and G. Kikuchi, (1969) J. Biochem. 65, 63.Google Scholar
  10. [10]
    H. Kochi and G. Kikuchi, (1969) Arch. Biochem. Biophys. 132, 359.Google Scholar
  11. [11]
    Y. Motokawa and G. Kikuchi, (1969) Arch. Biochem. Biophys. 135, 402.Google Scholar
  12. [12]
    Y. Motokawa and G. Kikuchi, (1969) J. Biochem. 65, 71.Google Scholar
  13. [13]
    T. Sato, H. Kochi, N. Sato and G. Kikuchi, (1969) J. Biochem. 65, 77.Google Scholar
  14. [14]
    Y. Motokawa, K. Hiraga, H. Kochi and G. Kikuchi, (1970) Biochem. Biophys. Res. Commun. 38, 771.Google Scholar
  15. [15]
    T. Yoshida and G. Kikuchi, (1972) J. Biochem. 72, 1503.Google Scholar
  16. [16]
    T. Yoshida and G. Kikuchi, (1973) J. Biochem. 73, No. 5.Google Scholar
  17. [17]
    S. M. Klein and R. D. Sagers, (1966) J. Biol. Chem. 241, 197.Google Scholar
  18. [18]
    S. M. Klein and R. D. Sagers, (1966) J. Biol. Chem. 241, 206.Google Scholar
  19. [19]
    S. M. Klein and R. D. Sagers, (1967) J. Biol. Chem. 242, 297.Google Scholar
  20. [20]
    S. M. Klein and R. D. Sagers, (1967) J. Biol. Chem. 242, 301.Google Scholar
  21. [21]
    Y. Motokawa and G. Kikuchi, (1972) J. Biochem. 72, 1281.Google Scholar
  22. [22]
    H. Kochi and G. Kikuchi, (1972) Seikagaku 44, 485.Google Scholar
  23. [23]
    C. G. Mackenzie, (1955) J. Biol. Chem. 186, 351.Google Scholar
  24. [24]
    M. L. Baginsky and F. M. Huennekens, (1966) Biochem. Biophys. Res. Commun. 23, 600.Google Scholar
  25. [25]
    M. L. Baginsky and F. M. Huennekens, (1967) Arch. Biochem. Biophys. 120, 703.Google Scholar
  26. [26]
    Y. Motokawa and G. Kikuchi, (1971) Arch. Biochem. Biophys. 146, 461.Google Scholar
  27. [27]
    K. Hiraga, H. Kochi, Y. Motokawa and G. Kikuchi, (1972) J. Biochem. 72, 1285.Google Scholar
  28. [28]
    P. Andrews, (1964) Biochem. J. 91, 222.Google Scholar
  29. [29]
    D. H. Lowry, H. G. Rosebrough, A. L. Farr and R. J. Randall, (1961) J. Biol. Chem. 193, 265.Google Scholar
  30. [30]
    L. J. Reed and D. J. Cox, (1966) Ann. Rev. Biochem. 35, 57.Google Scholar
  31. [31]
    E. A. Boeker and E. E. Snell, “The Enzymes”, ed. by P. D. Boyer, Vol. VI, p. 217. Academic Press, New York (1972).Google Scholar
  32. [32]
    T. Yoshida, G. Kikuchi, K. Tada, K. Narisawa and T. Arakawa, (1969) Biochem. Biophys. Res. Commun. 35, 577.Google Scholar
  33. [33]
    K. Tada, K. Narisawa, T. Yoshida, T. Konno, Y. Yokoyama, H. Nakagawa, K. Tanno, K. Mochizuki, T. Arakawa, T. Yoshida and G. Kikuchi, (1969) Tohoku J. Exp. Med. 98, 289.Google Scholar
  34. [34]
    T. Yoshida and G. Kikuchi, (1970) Arch. Biochem. Biophys. 139, 380.Google Scholar
  35. [35]
    M. Suda and H. Nakagawa, “Methods in Enzymology” ed. by H. Tabor and C. W. Tabor, Vol. 17B, p. 346. Academic Press, New York (1971).Google Scholar
  36. [36]
    C. Kutzbach and E. L. R. Stokstad, (1968) Biochem. Biophys. Res. Commun. 30, 111.Google Scholar
  37. [37]
    T. Yoshida and G. Kikuchi, (1971) Arch. Biochem. Biophys. 145, 658.Google Scholar
  38. [38]
    L. Goldstein, W. E. Knox and E. J. Behrman, (1962) J. Biol. Chem. 237, 2855.Google Scholar
  39. [39]
    K. Bojanowska and D. H. Williamson, (1968) Biochim. Biophys. Acta 159, 560.Google Scholar
  40. [40]
    H. Nakagawa, H. Kimura and S. Miura, (1967) Biochem. Biophys. Res. Commun. 28, 359.Google Scholar
  41. [41]
    R. A. Freedland and E. H. Avery, (1964) J. Biol. Chem. 239, 3357.Google Scholar
  42. [42]
    T. E. Friedemann, “Methods in Enzymology”, ed. by S. P. Colowick and N. O. Kaplan, Vol. III, p. 414. Academic Press, Inc., New York (1957).Google Scholar
  43. [43]
    A. Nagabhushanam and D. M. Greenberg, (1965) J. Biol. Chem. 240, 3002.Google Scholar
  44. [44]
    E. V. Rowsell, J. A. Carnie and S. D. Wahbi, (1965) Biochem. J. 96, 13P.Google Scholar
  45. [45]
    S. H. Mudd, J. D. Finkelstein, F. Irreverre and L. Laster, (1965) Biochem. Biophys. Res. Commun. 19, 665.Google Scholar
  46. [46]
    M. A. Grillo and T. Fossa, (1963) Bull. Soc. ital. Biol. sper. 39, 1199.Google Scholar
  47. [47]
    M. A. Grillo, T. Fossa and M. Coghe, (1970) Enzymologia, 39, 248.Google Scholar
  48. [48]
    N. L. Edson, H. A. Krebs and A. Model, (1936) Biochem. J. 30, 1380.Google Scholar
  49. [49]
    C. F. Strittmatter, (1965) J. Biol. Chem. 240, 2557.Google Scholar
  50. [50]
    J. L. Karlsson and H. A. Barker, (1949) J. Biol. Chem. 177, 597.Google Scholar
  51. [51]
    R. A. Bloomfield, A. A. Letter and R. P. Wilson, (1969) Arch. Biochem. Biophys. 129, 196.Google Scholar
  52. [52]
    D. S. Broderick, K. L. Candland, J. A. North and J. H. Mangum, (1972) Arch. Biochem. Biophys. 148, 196.Google Scholar
  53. [53]
    H. I. Nakada, B. Friedmann and S. Weinhouse, (1955) J. Biol. Chem. 216, 583.Google Scholar
  54. [54]
    S. Weinhouse, “A Symposium on amino acid metabolism”, ed. by D. McElroy and H. B. Glass, Johns Hopkins Univ., Baltimore, p. 637 (1955).Google Scholar
  55. [55]
    M. A. Schlossberg, R. J. Bloom, D. A. Richert and W. W. Westerfeld, (1970) Biochemistry, 9, 1148.Google Scholar
  56. [56]
    T. Saito, S. Tuboi, Y. Nishimura and G. Kikuchi, (1971) J. Biochem. 69, 265.Google Scholar
  57. [57]
    S. Ratner, V. Nocito and D. E. Green, (1944) J. Biol. Chem. 152, 119.Google Scholar
  58. [58]
    B. Childs, W. L. Nyhan, M. Borden, L. Bard and R. E. Cooke, (1961) Pediatrics 27, 522.Google Scholar
  59. [59]
    D. Shemin, C. S. Russell and T. Abramsky, (1955) J. Biol. Chem. 215, 613.Google Scholar
  60. [60]
    A. M. Nemeth, C. S. Russell and D. Shemin, (1957) J. Biol. Chem. 229, 415.Google Scholar
  61. [61]
    T. Ando and W. L. Nyhan, (1969) Tohoku J. Exp. Med. 99, 189.Google Scholar
  62. [62]
    W. L. Ryan and M. J. Carver, (1966) Nature, 212, 292.Google Scholar
  63. [63]
    Y. Matsuda, Y. Kuroda, K. Kobayashi and N. Katunuma, (1973) J. Biochem. 73, 291.Google Scholar
  64. [64]
    O. Wiss, (1949) Helv. Chim. Acta 32, 153.Google Scholar
  65. [65]
    H. Nakagawa, S. Miura, H. Kimura and T. Kanatsuna, (1969) J. Biochem. 66, 549.Google Scholar
  66. [66]
    H. R. Whiteley, (1960) Comp. Biochem. Physiol. 1, 227.Google Scholar
  67. [67]
    M. A. Grillo, T. Fossa and M. Coghe, (1966) Comp. Biochem. Physiol. 19, 589.Google Scholar
  68. [68]
    Y. Nakano, M. Fujioka and H. Wada, (1968) Biochim. Biophys. Acta 159, 19.Google Scholar
  69. [69]
    M. Fujioka, (1969) Biochim. Biophys. Acta 185, 383.Google Scholar
  70. [70]
    D. Elwyn, J. Ashmore, G. F. Chaill, S. Zottu, W. Welch and A. B. Hastings, (1957) J. Biol. Chem. 226, 735.Google Scholar
  71. [71]
    A. L. Kretchmar and E. J. Price, (1969) Metabolism 18, 684.Google Scholar
  72. [72]
    H. A. Lardy, C. M. Veneziale and F. Gabrielli, “Metab. Regul. Enzyme Action, Fed. Eur. Biochem. Soc. Meet., 6th 1969”, ed. by A. Sols, Academic Press, Inc., London, p. 55 (1970).Google Scholar
  73. [73]
    T. M. Chan and R. A. Freedland, (1971) Biochim. Biophys. Acta 237, 99.Google Scholar
  74. [74]
    H. C. Pitot, V. R. Potter and H. P. Morris, (1961) Cancer Res. 21, 1001.Google Scholar
  75. [75]
    H. C. Pitot and C. Peraino, (1964) J. Biol. Chem. 239, 1783.Google Scholar
  76. [76]
    C. Peraino and H. C. Pitot, (1964) J. Biol. Chem. 239, 4308.Google Scholar
  77. [77]
    C. Peraino, R. L. Blake and H. C. Pitot, (1965) J. Biol. Chem. 240, 3039.Google Scholar
  78. [78]
    E. Ishikawa, T. Ninagawa and M. Suda, (1965) J. Biochem. 57, 506.Google Scholar
  79. [79]
    C. Peraino, (1967) J. Biol. Chem. 242, 3860.Google Scholar
  80. [80]
    J. P. Jost, A. Hsie, S. D. Hughes and L. Ryan, (1970) J. Biol. Chem. 245, 351.Google Scholar
  81. [81]
    H. Inoue, C. B. Kasper and H. C. Pitot, (1971) J. Biol. Chem. 246, 2626.Google Scholar
  82. [82]
    G. P. Cheung, J. P. Cotropia and H. J. Sallach, (1969) Arch. Biochem. Biophys. 129, 672.Google Scholar
  83. [83]
    E. V. Rowsell, K. Snell, J. A. Carnie and A. H. Al-Tai, (1969) Biochem. J. 115, 1071.Google Scholar
  84. [84]
    T. Aikawa, H. Matsutaka, K. Takezawa and E. Ishikawa, (1972) Biochim. Biophys. Acta 279, 234.Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1973

Authors and Affiliations

  • Goro Kikuchi
    • 1
  1. 1.Departm. of BiochemistryTohoku University School of MedicineSendaiJapan

Personalised recommendations