Advertisement

World Journal of Surgery

, Volume 17, Issue 2, pp 154–164 | Cite as

Metabolic basis for management of the septic surgical patient

  • J. H. F. Shaw
  • J. B. Koea
World Progress in Surgery—Metabolic Changes in Surgery

Abstract

The physiologic events accompanying postoperative septic complications in surgical patients represent a coordinated response to bacterial invasion, which is aimed at maintaining the function of key organ systems. When sepsis is prolonged or overwhelming, physiologic dysfunction and multiorgan failure develop. This review outlines the pathophysiologic response to sepsis and correlates it with recent therapeutic advances in the metabolic management of the postoperative septic patient.

Keywords

Physiologic Event Como Patient Septique Multiorgan Failure Complication Septiques 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les évènements physiologiques contemporains des complications septiques postopératoires chez les patients en chirurgie sont une réponse logique à l'invasion bactérienne; leur but est de maintenir les grandes fonctions vitales. Cependant, lorsque l'état septique se prolonge ou est fulminant, les réactions physiologiques normales sont dépassées et des défaillances pluriviscérales surviennent. Cette revue souligne les réponses physiopathologiques à l'infection et les progrès récents accomplis dans le traitement du patient septique postopératoire.

Resumen

La sepsis ha sido definida como un proceso de putrefacción con respuesta sistémica; la respuesta sistémica establece la diferencia entre el paciente séptico y el paciente bacterémico. La sepsis y sus complicaciones sistémicas siguen siendo causa principal de morbilidad y mortalidad en los pacientes hospitalizados, con más de medio millón de casos informados anualmente en los Estados Unidos. La incidencia de complicaciones sépticas en los pacientes hospitalizados está en aumento, tal vez debido a la mayor utilización de procedimientos invasivos y de monitoría fisiológica y al más agresivo manejo de los pacientes inmunocomprometidos y de alto riesgo.

La respuesta metabólica a la cirugía no complicada es similar a la que se observa en el ayuno simple con mínimo desarreglo sistémico. Sin embargo, el desarrollo de complicaciones sépticas y de shock séptico en el paciente quirúrgico da lugar a una compleja respuesta sistémica que es coordinada por las vías neuroendocrinas activadas por hipotensión, dolor, hipoxia y por las citocinas mediadoras que producen las células blancas activadas en el foco de la infección. El propósito de tal respuesta es el control inmediato de la infección y el mantenimiento de la función de los principales sistemas orgánicos bajo las condiciones de estrés. Pero si el estrés resulta prolongado, la respuesta se asocia con morbilidad significativa y puede dar lugar a la falla orgánica multisistémica.

La presente revisión describe la respuesta fisiopatológica en la sepsis y la correlaciona con los avances terapéuticos recientes en el manejo metabólico del paciente séptico postoperatorio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balk, R.A., Bone, R.C.: The septic syndrome: definition and clinical implications. Crit. Care Clin.5(1):1, 1989Google Scholar
  2. 2.
    Increase in national hospital discharge surgery rates for septicaemia. United States 1979–1987. M.M.W.R.39:31, 1990Google Scholar
  3. 3.
    Parker, P.A., Parillo, J.E.: Septic shock: hemodynamics and pathogenesis. J.A.M.A.250:3324, 1983Google Scholar
  4. 4.
    Duggan, J.M., Oldfield, G.S., Ghosh, H.R.: Septicaemia as a hospital hazard. J. Hosp. Infect.6:406, 1985Google Scholar
  5. 5.
    Forgans, I.C., Eykyn, S., Bradly, R.D.: Serious infection in the intensive therapy unit: a 15 year study. Q. J. Med.60:773, 1986Google Scholar
  6. 6.
    McGowan, J.E., Parrot, P.C., Duty, V.P.: Nosocomial bacteremia: the prevention of procedure related cases. J.A.M.A.237:2727, 1977Google Scholar
  7. 7.
    Bone, R.C., Fisher, C.J., Clemmer, T.P., Slotman, G.J., Metz, C.A., Balk, R.A., and the Methylprednisolone Severe Sepsis Study Group: A controlled clinical trial of high dose methylprednisolone in the treatment of severe sepsis and septic shock. N. Engl. J. Med.317:653, 1987Google Scholar
  8. 8.
    Veterans Administration Systemic Sepsis Cooperative Study Group: Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N. Engl. J. Med.317:659, 1987Google Scholar
  9. 9.
    Kreger, B.E., Craven, D.E., McCabe, W.R.: Gram negative bacteremia. IV. Reevaluation of clinical features and treatment in 612 patients. Am. J. Med.65:344, 1980Google Scholar
  10. 10.
    Mani, V., Brennand, J., Mandal, B.K.: Invasive illness with Salmonella virchow infection. B.M.J.2:143, 1974Google Scholar
  11. 11.
    Fielding, L.P., Stewart-Brown, S., Blesovsky, L., Kearney, G.: Anastomotic integrity after operation for large bowel cancer: a multicentre study. B.M.J.2:411, 1980Google Scholar
  12. 12.
    Robertson, H.D., Polk, H.C., Jr.: The mechanism of infection in patients with diabetes mellitus: a review of leukocyte malfunction. Surgery75:123, 1974Google Scholar
  13. 13.
    Fuenfer, M.M., Olsen, G.E., Polk, H.C., Jr.: Effect of corticosteroids upon the phagocytic and bactericidal activity of neutrophils. Surgery78:27, 1975Google Scholar
  14. 14.
    Skornik, W.A., Dressler, D.P.: The effect of short term steroid therapy on lung bacterial clearance and survival in rats. Ann. Surg.179:415, 1974Google Scholar
  15. 15.
    Howard, R.J., Simmons, R.L.: Acquired immunologic deficiencies after trauma and surgical procedures. Surg. Gynecol. Obstet.139:771, 1974Google Scholar
  16. 16.
    Warden, G.D., Mason, A.D., Pruitt, B.A., Jr.: Suppression of leukocyte chemotaxis in vitro by chemotherapeutic agents used in the management of thermal injuries. Ann. Surg.181:363, 1975Google Scholar
  17. 17.
    Grogan, J.B., Miller, R.C.: Impaired function of polymorphonuclear leukocytes in patients with burns and other trauma. Surg. Gynecol. Obstet.137:784, 1973Google Scholar
  18. 18.
    Howard, R.J., Simmons, R.L.: Acquired immunologic deficiencies after trauma and surgical procedures. Surg. Gynecol. Obstet.139:771, 1974Google Scholar
  19. 19.
    Ollodrant, R., Marsberger, A.R.: The effect of hypovolemic shock on bacterial defense. Am. J. Surg.110:302, 1965Google Scholar
  20. 20.
    Klepser, R.G., Nengster, W.J.: The effect of alcohol upon the chemotactic response of leukocytes. J. Infect. Dis.65:196, 1939Google Scholar
  21. 21.
    Morr, J.J., Spilberg, I.: A mechanism for decreased resistance to infection by gram negative organisms during alcoholic intoxication. J. Lab. Clin. Med.86:253, 1975Google Scholar
  22. 22.
    Law, D.K., Dudrick, S.J., Abdou, N.I.: The effects of protein calorie malnutrition on immune competence of the surgical patient. Surg. Gynecol. Obstet.139:257, 1974Google Scholar
  23. 23.
    Lieberman, M.D., Reynolds, J., Goldfine, J., Shou, J., Daly, J.M.: Protein-calorie malnutrition inhibited antitumour response to interleukin-2 immunotherapy. Surgery108:452, 1990Google Scholar
  24. 24.
    Johnson, M.W., Manbach, H.I., Salmon, S.E.: Skin reactivity in patients with cancer: impaired delayed hypersensitivity. N. Engl. J. Med.284:1255, 1971Google Scholar
  25. 25.
    National Academy of Science-National Research Council, Division of Medical Sciences, Ad Hoc Committee of the Committee on Trauma: Postoperative wound infection: the influence of ultraviolet irradiation of the operating room and of various other factors. Ann. Surg.160(Suppl. 2):1, 1964Google Scholar
  26. 26.
    Cruse, P.J.E., Foord, R.: A five year prospective of 23649 surgical wounds. Arch. Surg.107:206, 1973Google Scholar
  27. 27.
    Bodey, G.P., Fainstein, V.: Infections of the gastrointestinal tract in the immunocompromised patient. Annu. Rev. Med.37:271, 1986Google Scholar
  28. 28.
    Hill, G.L., Douglas, R.G., Schroeder, D.: The metabolic basis of management of patients undergoing uncomplicated major surgery. World J. Surg. 146, 1993Google Scholar
  29. 29.
    Brennan, M.F., Shaw, J.H.F.: Nutrition and metabolism in surgical patients. In Essentials of Surgery, D.C. Sabiston, editor, Philadelphia, Saunders, 1987, pp. 96–108Google Scholar
  30. 30.
    Baue, A.E., Gunther, B., Hartl, W., Ackenhal, M., Heberer, G.: Altered hormonal activity in severely ill patients after injury or sepsis. Arch. Surg.119:1125, 1984Google Scholar
  31. 31.
    Carey, L.C., Cloutier, C.T., Lowery, B.D.: Growth hormone and adrenal cortical response to shock and trauma in the human. Ann. Surg.174:451, 1971Google Scholar
  32. 32.
    Hawker, F.H., Stewart, P.M., Baxter, R.C.: Relationship of somatomedin C/insulin-like growth factor-I levels to conventional nutritional indices in critically ill patients. Crit. Care Med.15:732, 1987Google Scholar
  33. 33.
    Amir, S., Brown, Z.W., Amir, Z.: The role of endorphins in stress: evidence and speculations. Neurosci. Biobehav. Rev.4:77, 1980Google Scholar
  34. 34.
    Ganong, W.F.: Review of Medical Physiology, 14th ed. East Norwalk, CT, Lange, 1989Google Scholar
  35. 35.
    Morgan, R.J., Martyn, J.A., Philbin, D.M., Coggins, C.H., Burke, J.F.: Water metabolism and antidiuretic hormone response following thermal injury. J. Trauma20:468, 1980Google Scholar
  36. 36.
    Hume, D.M., Egdahl, R.H.: The importance of the brain in the endocrine response to injury. Ann. Surg.150:697, 1959Google Scholar
  37. 37.
    Wilmore, D., Lindsey, C.A., Moylan, J.A., Faloona, G.R., Pruitt, B.A., Unger, R.A.: Hyperglucagonemia after burns. Lancet1:73, 1974Google Scholar
  38. 38.
    Kahn, C.R.: Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism27:1893, 1978Google Scholar
  39. 39.
    Clowes, G.H.A., Jr., Martin, H., Walji, S., Hirsch, E., Gazitua, R., Goodfellow, R.: Blood insulin responses to blood glucose levels in high output sepsis and septic shock. Am. J. Surg.135:577, 1978Google Scholar
  40. 40.
    Ryan, N.T.: Metabolic adaptations for energy production during trauma and sepsis. Surg. Clin. North Am.56:1073, 1976Google Scholar
  41. 41.
    Bessey, P.Q., Watters, J.M., Black, R.R., Brooks, D.C., Aoki, T., Wilmore, D.W.: Hormonal mechanisms of insulin resistance. Arch. Emerg. Med.1:170, 1984Google Scholar
  42. 42.
    Manson, J.W., Kleeberg, U., Dolan, P., Coleman, R.: Plasma kallikrein and Hageman factor in gram negative bacteremia. Ann. Intern. Med.70:545, 1970Google Scholar
  43. 43.
    Kontos, M.A., Magee, J.H., Shapiro, W., Patterson, J.L.: General and regional circulatory affects of synthetic bradykinin in man. Circ. Res.14:351, 1964Google Scholar
  44. 44.
    O'Donnell, T.F., Jr., Clowes, G.H.A., Jr., Tahino, R.C., Colman, R.W.: Kinin activation in the blood of patients with sepsis. Surg. Gynecol. Obstet.143:539, 1976Google Scholar
  45. 45.
    Bisecker, G.: Membrane attack complex of complement as a pathologic mediator. Lab. Invest.49:237, 1983Google Scholar
  46. 46.
    Weissmann, G., Sinden, J.E., Korchak, H.M.: Release of inflammatory mediators from stimulated neutrophils. N. Engl. J. Med.303:27, 1980Google Scholar
  47. 47.
    Champion, H.R., Jones, R.T., Trump, B.T., Decker, R., Wilson, S., Miginski, M., Gill, W.: A clinicopathologic study of hepatic dysfunction following shock. Surg. Gynecol. Obstet.142:657, 1976Google Scholar
  48. 48.
    Filkins, J.P.: Monokines and the metabolic pathophysiology of septic shock. Fed. Proc.44:300, 1985Google Scholar
  49. 49.
    Svartholm, E., Bergquist, D., Hedner, U., Ljungberg, J., Haglund, U.: Thromboxane A2-receptor blockade and prostacyclin in porcine Escherichia coli shock. Arch. Surg.124:669, 1989Google Scholar
  50. 50.
    Cook, J.A., Wise, W.C., Halushka, P.: Protective effect of selective leukotriene antagonist in endotoxemia in the rat. J. Pharmacol. Exp. Ther.235:470, 1985Google Scholar
  51. 51.
    Fink, M.P., MacVittie, T.J., Casey, L.C.: Inhibition of prostaglandin synthesis restores normal hemodynamics in canine hyperdynamic sepsis. Ann. Surg.200:619, 1984Google Scholar
  52. 52.
    Yellin, S.A., Nguyan, D., Quinn, J.V., Burchard, K.W., Crowley, J.P., Slotman, G.J.: Prostacyclin and thromboxane A2 in septic shock: species differences. Circ. Shock20:291, 1986Google Scholar
  53. 53.
    Flohe, L., Giertz, H.: Endotoxins, arachidonic acid and superoxide formation. Rev. Infect. Dis.9(Suppl):S553, 1987Google Scholar
  54. 54.
    Van Deventer, S., Buller, H.R., Ten Cate, J.W., Aarden, L., Hack, C.E., Sturk, A.: Experimental endotoxaemia in humans: analysis of cytokine release and coagulation, fibrinolytic and complement pathways. Blood76:2520, 1990Google Scholar
  55. 55.
    Tracey, K.J., Lowry, S.F., Fahey, T.J., et al.: Cachectin/tumor necrosis factor induces lethal shock and stress hormone response in a dog. Surg. Gynecol. Obstet.164:415, 1987Google Scholar
  56. 56.
    Van Der Poll, T., Buller, H., Ten Cate, H., Wortel, C., Bauer, K., Van Deventer, S., Hack, C.E., Sauerwein, H.P., Rosenberg, R.D., Ten Cate, J.W.: Activation of coagulation after administration of tumor necrosis factor to normal subjects. N. Engl. J. Med.322:1622, 1990Google Scholar
  57. 57.
    Marano, M.A., Fong, Y., Moldawer, L.L., Wei, H., Calvano, S.E., Tracey, K.J., Barie, P.S., Manogue, K., Cerami, A., Shires, G.T., Lowry, S.F.: Serum cachectin/tumor necrosis factor in critically ill patients with burns correlates with infection and mortality. Surg. Gynecol. Obstet.170:32, 1990Google Scholar
  58. 58.
    Michie, H.R., Mnajzoub, J.A., O'Dwyer, S.T., Revhaug, A., Wilmore, D.W.: Both cyclooxygenase-dependent and cyclooxy-genase-independent pathways mediate the neuroendocrine response in humans. Surgery108:254, 1990Google Scholar
  59. 59.
    Curran, R.D., Billiar, T.R., Stuehr, D.J., Ochoa, J.B., Harbrecht, B.G., Flint, S.G., Simmons, R.L.: Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann. Surg.212:462, 1990Google Scholar
  60. 60.
    Groenweld, A.B., Bronsveld, W., Thijs, L.G.: Hemodynamic determinants of mortality in human septic shock. Surgery99:240, 1986Google Scholar
  61. 61.
    Parillo, J.E.: The cardiovascular pathophysiology of sepsis. Annu. Rev. Med.40:469, 1989Google Scholar
  62. 62.
    Pober, J.S., Cotran, R.S.: Cytokines and endothelial cell biology. Physiol. Rev.70:427, 1990Google Scholar
  63. 63.
    Parker, M.M., Shelhammer, J.H., Bacharach, S.L., Green, M.V., Natanson, C., Frederick, T.M., Damske, R.N., Parrillo, J.E.: Profound but reversible myocardial depression in patients with septic shock. Ann. Intern. Med.100:483, 1984Google Scholar
  64. 64.
    Natanson, C., Fink, M.P., Ballantyne, H.K., MacVittie, Conklin, J.J., Parrillo, J.E.: Gram negative bacteremia produces severe systolic and diastolic cardiac dysfunction in a canine model that stimulates human septic shock. J. Clin. Invest.78:259, 1986Google Scholar
  65. 65.
    Parker, M.M., Suffredini, A.F., Natanson, C., Ognibene, F.P., Shelhamer, J.H., Parrillo, J.E.: Survivors of septic shock in humans develop reversible myocardial depression and ventricular dilatation. Clin. Res.34:413A, 1986Google Scholar
  66. 66.
    Fink, M.P., MacVittie, T.J., Casey, L.C.: Inhibition of prostaglandin synthesis restores normal haemodynamics in canine hyperdynamic sepsis. Ann. Surg.200:619, 1984Google Scholar
  67. 67.
    Hollenberg, N.K., Epstein, M., Rosen, S.M., Basch, R.I., Oken, D.E., Merrill, J.P.: Acute oliguric renal failure in man: evidence for preferential renal cortical ischemia. Medicine (Baltimore)47:455, 1968Google Scholar
  68. 68.
    Lucas, C.E., Rector, F., Werner, M., Rosenberg, I.K.: Altered renal homeostatic control with acute sepsis: a clinical significance. Arch. Surg.106:444, 1973Google Scholar
  69. 69.
    Streat, S.J., Hill, G.L.: Nutritional support in the management of critically ill patients in surgical intensive care. World J. Surg.11:194, 1987Google Scholar
  70. 70.
    Esbenshade, A.M., Newman, J.M., Lams, P.M., Jolles, H., Brigham, K.L.: Respiratory failure after endotoxic infusion in sheep: lung mechanisms and lung fluid balance. J. Appl. Physiol.53:967, 1982Google Scholar
  71. 71.
    Goldman, G., Welbourn, R., Kobzik, L., Valeri, C.R., Shepro, D., Hechtman, M.D.: Tumor necrosis factor mediates acid aspiration induced systemic organ injury. Ann. Surg.212:513, 1990Google Scholar
  72. 72.
    Tanaka, H., Sugimoto, H., Yoshioka, T., Sugimoto, T.: Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple organ failure. Ann. Surg.213:81, 1991Google Scholar
  73. 73.
    Cutillo, A.G.: The clinical assessment of lung water. Chest92:319, 1987Google Scholar
  74. 74.
    Dantzker, D.R., Brook, C.J., Dehart, P., Lynch, J.P., Weg, J.G.: Ventilation, perfusion distribution in the adult respiratory distress syndrome. Am. Rev. Respir. Dis.120:1039, 1979Google Scholar
  75. 75.
    Weir, E.K., Mlczock, J., Reeves, J.T., Grover, R.F.: Endotoxin and prevention of hypoxic pulmonary vasoconstriction. J. Lab. Clin. Med.88:975, 1976Google Scholar
  76. 76.
    Wilmore, D.W., Smith, R.J., O'Dwyer, S.T., Jacobs, D.O., Ziegler, T.R., Wang, X.D.: The gut: a central organ after surgical stress. Surgery104:917, 1988Google Scholar
  77. 77.
    Lindquist, B.: Propulsive gastrointestinal motility related to retroperitoneal irritation. Acta Chir. Scand. Suppl.384:1, 1968Google Scholar
  78. 78.
    Dobois, A., Weise, V.K., Kopin, I.J.: Postoperative ileus in the rat: pathophysiology, etiology and treatment. Ann. Surg.178:781, 1973Google Scholar
  79. 79.
    Herskowitz, K., Souba, W.W.: Intestinal glutamine metabolism during critical illness: a surgical perspective. Nutrition6:199, 1990Google Scholar
  80. 80.
    Alexander, J.W., Boyce, S.T., Babcock, G.F., Gianotti, L., Peck, M.D., Dunn, D., Pyles, T., Childress, M., Ash, S.: The process of microbial translocation. Ann. Surg.212:496, 1990Google Scholar
  81. 81.
    Abad-Lacruz, A., Gonzalaez-Huix, F., Esteve, M., Fernandez-Banares, F., Cabre, E., Boix, J., Acero, D., Humbert, P., Gassull, M.A.: Liver function test abnormalities in patients with inflammatory bowel disease receiving artificial nutrition: a prospective randomized study of total enteral nutrition versus total parenteral nutrition. J. Parenter. Ent. Nutr.14:618, 1990Google Scholar
  82. 82.
    Sax, H.C., Bower, R.H.: Hepatic complications of total parenteral nutrition. J. Parenter. Ent. Nutr.12:615, 1988Google Scholar
  83. 83.
    Lucas, C.E., Sugawa, C., Riddle, J., Rector, F., Rosenberg, B., Watt, A.J.: Natural history and surgical dilemma of stress gastric bleeding. Arch. Surg.102:266, 1971Google Scholar
  84. 84.
    Skillman, J.J., Gould, S.A., Chung, R.S., Silen, W.: The gastric mucosal barrier: clinical and experimental studies in critically ill and normal man and the rabbit. Ann. Surg.172:564, 1970Google Scholar
  85. 85.
    Stein, H., Hinder, R., Oosthuizen, M.: Gastric mucosal injury caused by hemorrhagic shock and reperfusion: protective role of the antioxidant glutathione. Surgery108:467, 1990Google Scholar
  86. 86.
    Clowes, G.H.A., Randall, H.T., Cha, C.J.: Amino acid and energy metabolism in septic and traumatized patients. J. Parenter. Ent. Nutr.4:195, 1980Google Scholar
  87. 87.
    Roth, E., Funovics, J., Muhlbacher, F.: Metabolic disorders in severe abdominal sepsis: glutamine deficiency in skeletal muscle. Clin. Nutr.1:25, 1982Google Scholar
  88. 88.
    Hassett, J., Border, J.R.: The metabolic response to trauma and sepsis. World J. Surg.7:125, 1983Google Scholar
  89. 89.
    O'Keefe, S.J., Sender, P.M., James, W.P.: Catabolic loss of nitrogen in response to surgery. Lancet2:1035, 1974Google Scholar
  90. 90.
    Kein, C.L., Young, V.R., Rohrbaugh, D.K., Burke, J.F.: Whole body protein synthesis and breakdown in children before and after reconstructive surgery of the skin. Metabolism27:27, 1978Google Scholar
  91. 91.
    Shaw, J.H.F., Wildbore, M., Wolfe, R.R.: Whole body protein kinetics in severely septic patients: the response to glucose infusion and total parenteral nutrition. Ann. Surg.205:288, 1986Google Scholar
  92. 92.
    Fearon, K.C., McMillan, D.C., Preston, T., Winstanley, P., Cruickshank, A.M., Shenkin, A.: Elevated circulating interleukin-6 is associated with an acute phase response but reduced fixed hepatic protein synthesis in patients with cancer. Ann. Surg.213:26, 1991Google Scholar
  93. 93.
    Frayn, K.N.: Substrate turnover after injury. Br. Med. Bull.41:232, 1985Google Scholar
  94. 94.
    Wolfe, R.R., Miller, H.I., Spitzer, J.J.: Glucose and lactate metabolism in burn and shock. Am. J. Physiol.232:415, 1977Google Scholar
  95. 95.
    Stoner, H.B., Frayn, K.N., Barton, J., Threlfall, C.J., Little, R.A.: The relationship between plasma substrates and hormone and the severity of injury in 277 recently injured patients. Clin. Sci.56:563, 1979Google Scholar
  96. 96.
    Imamura, M., Clowes, G.H.A., Jr., Blackburn, G.L., O'Donnell, T.F., Trerice, M., Bhimjee, Y., Ryan, N.T.: Liver metabolism and gluconeogenesis in trauma and sepsis. Surgery77:868, 1975Google Scholar
  97. 97.
    Wilmore, D.W., Goodwin, C.W., Aulick, L.H., Powanda, M.C., Mason, A.D., Pruitt, B.A.: Effect of injury and infection on visceral metabolism. Ann. Surg.192:491, 1980Google Scholar
  98. 98.
    Shaw, J.H.F., Wolfe, R.R.: Determination of glucose turnover and oxidation in normal volunteers and septic patients using stable and radio-isotopes: the response to glucose infusion and total parenteral nutrition. Aust. N.Z. J. Surg.56:785, 1986Google Scholar
  99. 99.
    Wolfe, R.R., Durkot, M.J., Allsop, J.R., Burke, J.F.: Glucose metabolism in severely burned patients. Metabolism28:1031, 1979Google Scholar
  100. 100.
    Shaw, J.H.F., Wolfe, R.R.: Response to lipid and glucose infusions in sepsis: a kinetic analysis. Metabolism34:442, 1985Google Scholar
  101. 101.
    Shaw, J.H.F., Januskiewicz, J., Horsborough, R.: Glucose kinetics and oxidation in normal volunteers, septicaemic patients and patients with severe pancreatitis. Circ. Shock16:77, 1985Google Scholar
  102. 102.
    Nanni, G., Siegel, J.H., Coleman, B., Fader, P., Castglione, R.: Increased lipid fuel dependence in the critically ill septic patient. J. Trauma24:14, 1984Google Scholar
  103. 103.
    Stoner, H.B., Little, R.A., Frayn, K.N., Elebute, A.E., Tresaderm, J., Gross, E.: The effect of sepsis on the oxidation of carbohydrate and fat. Br. J. Surg.70:32, 1983Google Scholar
  104. 104.
    Little, R.A.: Heat production after injury. Br. Med. Bull.41:226, 1985Google Scholar
  105. 105.
    Wolfe, R.R., Herdon, D.N., Jahoor, F., Miyoshi, H., Wolfe, M.: The effect of severe burn injury on substrate recycling by glucose and fatty acids. N. Engl. J. Med.317:403, 1987Google Scholar
  106. 106.
    Moore, F.D.: The Metabolic Care of the Surgical Patient. Philadelphia, Saunders, 1959Google Scholar
  107. 107.
    Boyd, J., Stanford, G., Chernow, B.: The pharmacotherapy of septic shock. Crit. Care Clin.5:133, 1989Google Scholar
  108. 108.
    Lee, R.M., Balk, R.A., Bone, R.C.: Ventilatory support in the management of septic patients. Crit. Care Clin.5:157, 1989Google Scholar
  109. 109.
    Hussain, S.N., Simkos, G., Roussos, C.: Respiratory muscle fatigue: a cause of ventilatory failure in septic shock. J. Appl. Physiol.58:2033, 1985Google Scholar
  110. 110.
    Mueller, P.R., VanSonnenberg, E.: Interventional radiology in the chest and abdomen. N. Engl. J. Med.322:1364, 1990Google Scholar
  111. 111.
    Schumer, W.: Steroids in the treatment of clinical septic shock. Ann. Surg.184:333, 1976Google Scholar
  112. 112.
    Sibbald, W.J., Anderson, R.R., Reid, B., Holliday, R.L., Driedger, A.A.: Alveolar-capillary permeability in human septic ARDS. Chest79:133, 1981Google Scholar
  113. 113.
    Sprung, C.L., Caralais, P.V., Marcial, E.H., Pierce, M., Gelbard, M.A., Long, W.M., Duncan, R.C., Tendler, M.D., Karpf, M.: The effects of high dose corticosteroids in patients with septic shock. N. Engl. J. Med.311:1137, 1984Google Scholar
  114. 114.
    Chernow, B., Reed, L., Geelhoed, G.W., Anderson, M., Teich, S., Meyerhoff, J., Beardsley, D., Lake, C.R., Holaday, J.W.: Glucagon: endocrine and calcium involvement in cardiovascular actions in dogs. Circ. Shock19:393, 1986Google Scholar
  115. 115.
    Zaloga, G.P., Delacey, W., Holmboe, E.: Glucagon reversal of hypotension in a case of anaphylactic shock. Ann. Intern. Med.105:65, 1986Google Scholar
  116. 116.
    Holaday, J.W., Faden, A.I.: Naloxone reversal of endotoxin hypotension suggests role of endogenous endorphins in shock. Nature275:450, 1978Google Scholar
  117. 117.
    Miller, R.R., Menke, J.A., Hansen, N.B., Zwick, D.L., Bickers, R.G., Nawicki, P.T.: The effect of naloxone on the hemodynamics of the newborn piglet with septic shock. Pediatr. Res.20:707, 1986Google Scholar
  118. 118.
    Reynolds, D.G., Gurll, N.J., Vargish, T., Lechner, R.B., Faden, A.I., Holaday, J.W.: Blockage of opiate receptors with naloxone improves survival and cardiac performance in canine endotoxin shock. Circ. Shock7:39, 1980Google Scholar
  119. 119.
    Furman, W.L., Menke, J.A., Barson, W.J., Miller, R.R.: Continuous naloxone infusion in two neonates with septic shock. J. Pediatr.105:649, 1984Google Scholar
  120. 120.
    Bonnet, F., Bilaine, J., Lhoste, F., Mankikian, B., Kerdelhue, B., Rapin, M.: Naloxone therapy in septic shock. Crit. Care Med.13:972, 1985Google Scholar
  121. 121.
    Demaria, A., Heffernan, J.J., Grindlinger, G.A., Craven, D.E., McIntosh, T.K., McCabe, W.R.: Naloxone versus placebo in the treatment of septic shock. Lancet1:1363, 1985Google Scholar
  122. 122.
    Ziegler, E.J., Fisher, C.J., Sprung, C.L., Straube, R.C., Sadoff, J.C., Faulke, G.E., Wartel, C.H., Fink, M.P., Dellinger, R.P., Teng, N.N.H., Allen, I.E., Berger, H.J., Knatterud, G.L., LoBuglio, A.F., Smith, C.R., and the HA-1A Sepsis Study Group: Treatment of gram negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. N. Engl. J. Med.324:429, 1991Google Scholar
  123. 123.
    Tracey, K.J., Fong, Y., Hesse, D.G., Manague, K.R., Lee, A.T., Kuo, G.C., Lowry, S.F., Cerami, A.: Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature330:662, 1987Google Scholar
  124. 124.
    Exley, A.R., Cohen, J., Buurman, W., Owen, R., Hanson, G., Lumley, J., Aulakh, J.M., Bodmer, M., Riddell, A., Stephens, S., Perry, M.: Monoclonal antibody to TNF in severe septic shock. Lancet1:1275, 1990Google Scholar
  125. 125.
    ASPEN Board of Directors guidelines for use of total parenteral nutrition in the hospitalized patient. J. Parenter. Ent. Nutr.10:441, 1986Google Scholar
  126. 126.
    Koruda, M.J., Guenter, H., Rombeau, J.L.: Enteral nutrition in the critically ill. Crit. Care Clin.3:133, 1987Google Scholar
  127. 127.
    Hill, G.L., Church, J.: Energy and protein requirements in general surgical patients requiring intravenous nutrition. Br. J. Surg.71:1, 1984Google Scholar
  128. 128.
    Shaw, J.H.F., Wolfe, R.R.: Energy and protein metabolism in sepsis and trauma. Aust. N.Z. J. Surg.57:41, 1987Google Scholar
  129. 129.
    Alverdy, J.C., Aoys, E., Moss, G.S.: Total parenteral nutrition promotes bacterial translocation from the gut. Surgery104:185, 1988Google Scholar
  130. 130.
    Shaw, J.H.F.: Influence of stress, depletion, and/or malignant disease on the responsiveness of surgical patients to total parenteral nutrition. Am. J. Clin. Nutr.48:144, 1988Google Scholar
  131. 131.
    Goodgame, J.T.: A critical evaluation of the results of total parenteral nutrition in various disease states. In Surgical Nutrition, J.E. Fischer, editor, Boston, Little, Brown, 1983, pp. 779–796Google Scholar
  132. 132.
    Cerra, F., Hirsch, J., Mullen, K., Blackburn, G., Luther, W.: The effect of stress level, amino acid formula, and nitrogen dose on nitrogen retention in traumatic and septic stress. Ann. Surg.205:282, 1987Google Scholar
  133. 133.
    Smith, R.C., Burkinshaw, L., Hill, G.L.: Optimal energy and nitrogen intake for gastroenterological patients requiring intravenous nutrition. Gastroenterology82:445, 1982Google Scholar
  134. 134.
    Brown, R.O., Bradley, J.E., Bekemeyer, W.B., Luther, R.W.: Effect of albumin supplementation during parenteral nutrition on hospital morbidity. Crit. Care Med.16:1177, 1988Google Scholar
  135. 135.
    Baker, J.P., Detsky, A.S., Stewart, S., Whitwell, J., Marliss, E.B., Jeejeebhoy: Randomized trial of total parenteral nutrition in critically ill patients: metabolic effects of varying glucose-lipid ratios as the energy source. Gastroenterology87:53, 1984Google Scholar
  136. 136.
    Schoeller, D.A., Kusher, R.F., Jones, P.J.H.: Validation of doubly labelled water for measuring energy expenditure during parenteral nutrition. Am. J. Clin. Nutr.44:291, 1986Google Scholar
  137. 137.
    Bonau, R.A., Ang, S.D., Jeevanandam, J., Daly, J.M.: High branched chain amino acid solutions: relationship of composition to efficacy. J. Parenter. Ent. Nutr.8:622, 1984Google Scholar
  138. 138.
    Hammarqvist, F., Wernerman, J., Rustom Ali, Von Der Decken, A., Vinnars, E.: Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis and improves nitrogen balance. Ann. Surg.209:455, 1989Google Scholar
  139. 139.
    Wernerman, J., Hammarqvist, F., Von Der Decken, A., Vinnars, E.: Ornithine-alpha-ketoglutarate improves skeletal muscle protein synthesis as assessed by ribosome analysis and nitrogen use after surgery. Ann. Surg.206:674, 1987Google Scholar
  140. 140.
    Vinnars, E., Hammarqvist, F., Von Der Decken, A., Wernerman, J.: Role of glutamine and its analogs in posttraumatic muscle protein and amino acid metabolism. J. Parenter. Ent. Nutr.14(Suppl):125S, 1990Google Scholar
  141. 141.
    Shaw, J.H.F., Galler, L., Holdaway, I., Holdaway, C.M.: The effect of extradural blockade upon glucose and urea kinetics in surgical patients. Surg. Gynecol. Obstet.165:260, 1987Google Scholar
  142. 142.
    Shaw, J.H.F., Wolfe, R.R.: Metabolic intervention in surgical patients: an assessment of the effect of somatostatin, ranitidine, naloxone, diclophenac, dipyridamole or salbutamol infusion on energy and protein kinetics in surgical patients using stable and radioisotopes. Ann. Surg.207:274, 1988Google Scholar
  143. 143.
    Tweedle, D., Walton, C., Johnston, I.D.A.: The effect of an anabolic steroid on postoperative nitrogen balance. Br. J. Clin. Pract.27:130, 1973Google Scholar
  144. 144.
    Yule, A.G., Macfie, J., Hill, G.L.: The effect of an anabolic steroid on body composition in patients receiving intravenous nutrition. Aust. N.Z. J. Surg.51:280, 1981Google Scholar
  145. 145.
    Douglas, R.G., Humberstone, D.A., Hatstead, A., Shaw, J.H.F.: Metabolic effects of recombinant human growth hormone: isotopic studies in the postabsorptive state and during total parenteral nutrition. Br. J. Surg.77:785, 1990Google Scholar
  146. 146.
    Ziegler, T.R., Young, L.S., Ferrari-Balivieri, E., Demling, R., Wilmore, D.W.: Use of growth hormone combined with nutritional support in a critical care unit. J. Parenter. Ent. Nutr.14:574, 1990Google Scholar
  147. 147.
    Ziegler, T.R., Young, L.S., Manson, J.McK., Wilmore, D.W.: Metabolic effects of recombinant human growth hormone in patients receiving total parenteral nutrition. Ann. Surg.208:6, 1988Google Scholar
  148. 148.
    Douglas, R.G., Ball, K.T., Breier, B.H., Shaw, J.H.F., McCall, J., Parry, B., Gluckman, P.D.G.: The metabolic effects of IGF-I and IGF-II infusion in starving lambs. J. Clin. Invest.88:614, 1991Google Scholar
  149. 149.
    Douglas, R.G., Ball, K.T., Breier, B.H., Shaw, J.H.F., McCall, J., Parry, B., Gluckman, P.D.G.: The effect of IGF-I infusion on protein metabolism in the basal state and during TNF infusion in starving lambs. Am. J. Physiol.261:E606, 1991Google Scholar
  150. 150.
    Humberstone, D.A., Shaw, J.H.F.: Isotopic studies during surgical convalescence. Br. J. Surg.76:154, 1989Google Scholar

Copyright information

© Société Internationale de Chirurgie 1993

Authors and Affiliations

  • J. H. F. Shaw
    • 1
  • J. B. Koea
    • 1
  1. 1.Department of SurgeryAuckland HospitalAucklandNew Zealand

Personalised recommendations